Interface Description

True-Color-Sensor with IO-Link

Ordering code: BFS000M
Part number: BFS 33M-GSI-F01-S75
Contents

1. Introduction .. 3
2. Safety Instructions ... 4
3. Technical Data .. 5
 3.1. General .. 5
 3.2. IO-Link .. 5
 3.3. Display elements ... 5
 3.4. Installation ... 6
 3.5. Connection .. 6
4. Commissioning ... 7
 4.1. Step 1: Installation ... 7
 4.2. Step 2: Ambient light compensation .. 7
 4.3. Step 3: Calibrate sensor ... 8
 4.4. Step 4: Select work mode .. 8
 4.5. Step 5: Teach and assign products ... 8
 4.6. Explanations ... 11
5. Read current sensor status ... 14
 5.1. Explanations ... 14
6. Read current measurement values ... 15
7. Process Data .. 16
8. Service Data .. 17
 8.1. System parameters ... 17
 8.2. Identification parameters ... 18
 8.3. Diagnostic parameters ... 18
 8.4. System command ... 19
 8.5. Sensor-specific parameters ... 20
9. Error Numbers ... 24

Tables:

Table 1 : System Parameters .. 17
Table 2 : Identification Parameters .. 18
Table 3 : Diagnostic Parameters ... 18
Table 4 : System command .. 19
Table 5 : Sensor-specific Parameters .. 21
Table 6 : Error Numbers ... 24
1. Introduction

Function

The BFS 33M is a so-called true color sensor. It operates in the CIELab color space, which covers all colors perceptible to the human eye. The sensor sends white LED light to the target object. The components reflected back from the object are detected and analyzed by the sensor. This enables the object color to be determined with high accuracy.

This manual describes how objects and object colors are parameterized. A total of 255 colors (0x01…0xFF) plus a background color can be learned. Each color can also have a tolerance assigned to it. Alternately both CIELab color values and XYZ color values can be read out directly using the parameter data. In this case the higher level controller evaluates the results.

Application

The sensor has two different work modes. In “Best-Fit” mode the sensor automatically selects the closest matching object. In “Precise” mode an object and its color are only detected if the values are within the specified tolerance. These possibilities open up a broad application spectrum from object detection to quality control.

Calibration

In order to achieve maximum color detection accuracy, first a stable measuring configuration is necessary. The next step is to perform a calibration. For this the included reference card is recommended for parameterizing the printed Y-value. Alternately you can also use regular white printing paper and set the Y-value to 90,0.

Communication

Communication with the master or the controller takes place only through IO-Link. This allows all the functions described below to be selected and used. The 2 bytes of process data contain the product number of the product which fits best to the target. Only one of the learned colors can be active at one time. If the current color cannot be assigned to any of the products or if the background color is detected, then this is also displayed in the process data.

Cycle time

The sensor has minimum cycle time of 9.2 ms. Therefore the sensor is not suitable for fast processes. For fast processes we recommend sensor BFS000L which has a maximum switching frequency of 1.5 kHz.

Confirm the performance capability of the sensor by carrying out the individual steps from the manual in order. Please maintain this order during commissioning of the device. Only then will you get the maximum from your new Balluff product.
2. Safety Instructions

These photoelectric sensors may not be used in applications in which the safety of persons depends on functioning of the device (not a safety component as defined by the EU Machine Directive).

Read the manual carefully before commissioning.

Exempt Group per IEC 62471:2009
DO NOT LOOK DIRECTLY INTO THE LIGHT BEAM!
Risk of glare and irritation!

The sensor should be installed such that it is not possible to look directly into the light source during operation.

The CE Mark confirms that our products conform to the requirements of the EC Directives 2014/30/EG and the EMC Law.
In our EMC Laboratory, which is accredited by the DATech for Testing of Electromagnetic Compatibility, we have verified that Balluff products meet the EMC requirements of EN 60947-5-2.
3. Technical Data

3.1. General

No. of products: 255 + background

3.2. IO-Link

- Operating voltage: 24 VDC +/-10%
- Current draw: < 60 mA
- Connection: M8 plug, 4-pin
- IO-Link version: V1.1
- Transmission rate: 230.4 kbit/s (COM3)
- Process data length: 2 bytes
- Frame type: TYPE_2_V
- Minimum cycle time: 9.2 ms

3.3. Display elements

- Power (LED green): On when 24 VDC power is present
 Flashing when sensor firmware is being updated
- Com (LED green): On when IO-Link connection is active
- Out (LED yellow): On when one of the products (1…255) was detected
 by the sensor
- Error (LED red): On when the sensor signal is overdriven
3.4. **Installation**

The sensor is fastened using two or four M4 screws. Then the fiber optics are attached. Note the correct routing of the emitter and receiver. See the corresponding labeling on the sensor and fiber optic cable.

3.5. **Connection**

The sensor is connected to the master using a 4-pin M8 plug. Pin 2 is not used.
4. Commissioning

The sensor is started up in five steps. The order given below must be followed.

4.1. Step 1: Installation

1. Attach BFS 33M sensor using two M3 screws
2. Attach fiber optics to sensor (ensure correct routing of the emitter and receiver)
3. Position fiber optic head so that reliable detection of the target object is possible.

Notes:

- The permissible object distances depend on the fiber optics and on optional added lenses
- Position the fiber optic head at a slight angle for shiny objects (approx. 20°)
- Install the sensor, fiber optics and their head firmly and such that they are not subject to vibration.

4. Connect sensor to IO-Link
5. Parameterize sensor (see Steps 2 to 5)

4.2. Step 2: Ambient light compensation

This function is optional for especially critical applications.

Example of especially critical applications:
Use of a lens in which the beams of the emitter and receiver pass through a common 'opto-mechanical' path.

1. Point fiber optics into empty space
2. Send value 0xA3 (Compensate Environment) to Index 0x0002 (system command)
3. Wait 20 s while not changing the position of the fiber optics
4. Querying Index 0x0407 Subindex 0x03 will return the current compensation status
5. Repeat query until status 0x01 is returned

Status values and their meaning:

Value 0x05: Compensation on
Value 0x01: Compensation successfully completed (parameters are stored)
Value 0x07: Error (repeat compensation)

6. Send value 0x01 to Index 0x00BF Subindex 0x00: Compensation is activated.
Photoelectric Sensors
True-Color-Sensor BFS 33M with IO-Link

4.3. **Step 3: Calibrate sensor**

1. Place reference card for calibration into measuring position. The card is included with the sensor. The position of the reference card must be equal to the position of the target.
2. Set sensor gain to autogain. Therefore send value 1 to Index 0x00BE Subindex 0x02.
 Alternatively send value 0 to Index 0x00BE Subindex 0x02 to deactivate autogain. Use Index 0x00BE Subindex 0x01 to set the sensor gain so that the sensor signal is not overdriven. (See Bit 15 / Byte 0 in the process data.)
 If the signal is overdriven, reduce gain, and / or increase object distance.
3. Use Index 0x0401 to specify the Y target value for the calibration (Y-value is printed on the reference card). If there is no reference card available, use a white piece of paper. (Use 90,0 as Y-value).
4. Send 0xA4 to Index 0x0002 (system command) to execute calibration.
5. Wait 10 s until calibration is completed
6. Querying Index 0x0407 Subindex 0x02 returns the current calibration status
7. Continue querying until status 0x01 is returned

Status values and their meaning:

Value 0x05: Calibration on
Value 0x01: Calibration successfully completed (parameters are stored)
Value 0x07: Error (repeat calibration)

4.4. **Step 4: Select work mode**

The sensor has two different work modes.

Send 0x01 to Index 0x0402 Subindex 0x00: Precise-Mode is activated.
Send 0x00 to Index 0x0402 Subindex 0x00: Best-Fit Mode is activated.

For standard applications Best-Fit Mode is recommended.

4.5. **Step 5: Teach and assign products**

The sensor provides **four options** for teaching in products.

The **Best-Fit Mode** provides **two options**

Option A1 is a convenient, automated process for teach-in directly onto the product to be queried. **This option is recommended for standard applications.**
Option A2 involves entering the numeric values manually.
Photoelectric Sensors
True-Color-Sensor BFS 33M with IO-Link

The Precise-Mode provides two options

Option B1 is a convenient, automated process for teach-in directly onto the product to be queried.
Option B2 involves entering the numeric values manually.

A1: Teach-In procedure (automatic with object in Best-Fit mode)

1. Position product in front of sensor.
2. Observe wait time (see Table W).
3. Select Index 0x0400 Subindex 0x1: Product number (1…255).
 (The product is then automatically activated; the tolerance is automatically set in this mode.)
4. Repeat procedure if needed for different products. A new product number (1…255) must be assigned each time.
5. Remove product (sensor detects the background).
6. Observe wait time (see Table W).
7. Enter Index 0x0400 Subindex 0x1: Product number for background (65535) (The background is automatically taught and activated.)

Only now is the sensor fully ready!

The wait time after positioning the sensor ensures that it has established a stable working state before the actual measurements from the sensor are accepted. The wait time depends directly on the set value for averaging, i.e. a higher value requires a longer wait time.

<table>
<thead>
<tr>
<th>Averaging</th>
<th>Wait time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 ms</td>
</tr>
<tr>
<td>2</td>
<td>40 ms</td>
</tr>
<tr>
<td>4</td>
<td>80 ms</td>
</tr>
<tr>
<td>16</td>
<td>300 ms</td>
</tr>
<tr>
<td>64</td>
<td>1.3 s</td>
</tr>
<tr>
<td>256</td>
<td>5.1 s</td>
</tr>
<tr>
<td>1024</td>
<td>20.5 s</td>
</tr>
</tbody>
</table>

Table W: Wait time after positioning the sensor.

A2: Manual specification of the target values for products (without object) in Best-Fit mode

1. Select Index 0x0404: Select product number (1…255).
2. Index 0x0405 Subindex 0x2 to 0x4: Enter CIELab target values for the product.
 (The tolerance is automatically determined in this mode.)
3. Activate Index 0x0405 Subindex 0x1: Release product (1…255).
4. Repeat procedure if needed for different products. A new product number (1…255) must be assigned each time.
5. Index 0x0403 Subindex 0x2 to 0x4: Enter CIELab target values for the background.
6. Index 0x0403 Subindex 0x1: Enable background approval.

(The tolerances are automatically determined in this mode.)
Only now is the sensor fully ready!

B1: Teach-In procedure (automatic with object in Precise mode)

1. Position product in front of sensor.
2. Observe wait time (see Table W).
3. Enter Index 0x0400 Subindex 0x2: Tolerance Delta E.
4. Select Index 0x0400 Subindex 0x1: Product number (1…255 or 0x01…0xFF).
 (The product is then automatically activated.)
 Only after this is the teach-in process completed
5. Repeat procedure if needed for different products. A new product number (1…255) must be assigned each time.

 Optionally the background can be taught as follows:
6. Remove product (sensor detects the background).
7. Observe wait time (see Table W).
8. Enter Index 0x0400 Subindex 0x2: Tolerance Delta E.
9. Enter Index 0x0400 Subindex 0x1: Product number (65535 or 0xFFFF) for background (the background is automatically activated.)
 Only now is the sensor fully ready!

The wait time after positioning the sensor ensures that it has established a stable working state before the actual measurements from the sensor are accepted. The wait time is directly linked to the set value of the averaging, i.e. a longer waiting time is required for a higher value.

<table>
<thead>
<tr>
<th>Averaging</th>
<th>Wait time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20 ms</td>
</tr>
<tr>
<td>2</td>
<td>40 ms</td>
</tr>
<tr>
<td>4</td>
<td>80 ms</td>
</tr>
<tr>
<td>16</td>
<td>300 ms</td>
</tr>
<tr>
<td>64</td>
<td>1.3 s</td>
</tr>
<tr>
<td>256</td>
<td>5.1 s</td>
</tr>
<tr>
<td>1024</td>
<td>20.5 s</td>
</tr>
</tbody>
</table>

Table W: Wait time after positioning the sensor.

Post-setting the tolerance:

To adjust the tolerance after the teach-in process, first use Index 0x0404 to select the product number and then use Index 0x0405 Subindex 0x5 to select the tolerance. Index 0x0403 Subindex 0x5 is used for the background.

B2: Manual specification of the target values for products (without object) in Precise mode

1. Select Index 0x0404: Select product number (1…255).
2. Index 0x0405 Subindex 0x2 to 0x4: Enter CIELab target values for the product.
3. Enter Index 0x0405 Subindex 0x5: Tolerance Delta E.
4. Index 0x0405 Subindex 0x1: Enable product approval.
5. Repeat procedure if needed for different products. A new product number (1...255) must be assigned each time.

 Optionally the background can be taught as follows.
6. Index 0x0403 Subindex 0x2 to 0x4: Enter CIELab target values for the background.
7. Enter Index 0x0400 Subindex 0x5: Enter Tolerance Delta E for the background.
8. Index 0x0403 Subindex 0x1: Enable background approval.

Only now is the sensor fully ready!

Post-setting the tolerance:

To adjust the tolerance after the teach-in process, first use Index 0x0404 to select the product number and then use Index 0x0405 Subindex 0x5 to select the tolerance. Index 0x0403 Subindex 0x5 is used for the background.

Repeat the process with a new product number for additional products.

4.6. Explanations

Explanation for Step 2 (ambient compensation)

The ambient compensation function is used only if the sensor receives scattered light from its own light source (for example, within separate optics). This scattered light leads to an offset that makes it difficult to evaluate the signal competently.

During the compensation, nothing (no product and no object) is allowed to be in front of the optics.

Ambient compensation is activated on the sensor by enabling release of compensation (Index 0x00BF – Value = 0x01). If release is disabled, the sensor uses no ambient compensation.

When compensation is active, the sensor uses the last stored ambient compensation. Each time the status of compensation release is changed, the respective status is automatically stored on the sensor.

Explanation for Step 3 (calibrate sensor)

The values returned with Index 0x0409 correspond to the tristimulus values currently determined by the sensor. These form the numerical basis for converting into the CIELab color space. Put simply, a normalized tristimulus input value range is assumed which varies in a range of 0…100. These values are linear, which does not however apply to the CIELab values. This means tristimulus values are better suited for example for deriving the dynamic level of the sensor.

In practice, effects arise which depend on the fiber optics cable, lenses, measuring distances and angles. For conversion into the CIELab color space to function, but also
in order to adapt to the wide variety of measuring conditions and applications, a calibration should be performed after final installation. The goal of calibration is to force a defined brightness result for a defined measuring condition. White cards having known reference values are generally used for this. But this is only necessary if the CIE Lab results need to agree as precisely as possible with the laboratory values for example. Often this method cannot be used, when for example the contour of the product does not permit affixing of a reference. The calibration can therefore “any” target values. This also makes it possible for example to create a “golden product” whereby one assumes a brightness value which can be estimated from a gray scale. A “100% white” would have the value 100 as the target, a 50% white (light gray) would have the target value 50. A common sheet of printing paper (non-glossy) can be assumed to have a value of 90.

Explanation for Step 4 (select work mode)

Best-Fit mode

Function:

In ‘Best-Fit’ mode the sensor does not take into account any specified product tolerances. The sensor always processes the parameters for all active products internally and always returns the product number that most closely matches the current actual sensor values. Determining the Best-Fit product involves calculating the Delta-E between the current actual sensor values and the target values for each stored product.

In this mode one of the products is always determined to be the ‘best’ matching product regardless of the set product parameters.

Note: If multiple stored products have exactly the same deviation from the actual value, the lowest of the product numbers is returned.

Application:

The work mode ‘Best-Fit’ is suitable for selecting an object from among several possible (and known) ones. You can for example check whether objects having the right color have been brought into a production process without requiring adherence to an exact color shade. This also makes this mode very good for sorting tasks.

Precise mode

Function:

In ‘Precise’ mode a product number is returned as a result only if the current actual sensor values lie within the specified tolerances for the respective product. If the actual values lie within the tolerances for multiple products, no unambiguous product association is possible. In this case the corresponding bit is set (Byte 0, Bit 6).
If the actual values lie outside the tolerances for all stored products, once again no product is detected and the corresponding bit is set (Byte 0, Bit 5).

The process data only return a correct product number if the actual sensor values lie exactly within the tolerances for a single product. The tolerance specification is based on the product parameter ‘Delta-E’ for the product.

Application:

‘Precise’ mode is suitable for example in quality assurance of products, since here the tolerances for color and intensity have to be held in order for the object to be detected and evaluated as good.

Explanation for Step 5 (teach and associate products)

The procedure for teaching in a product differs, depending on whether the current actual values of a product positioned in front of the sensor are to be applied or the target values of a product are to be specified manually.

To teach in a product, a Delta E tolerance value must first be specified in Precise operating mode via Index 0x0400 Subindex 0x2.

This does not trigger a teach-in of the product yet! Then the product number to be used is transferred via Index 0x0400 Subindex 0x1. When this is done, the current CIELab actual values of the sensor are stored on the sensor as target values of the transferred product number. At the same time, the product is automatically enabled on the sensor (see Index 0x0403 Subindex 0x1 or Index 0x0405 Subindex 0x1).

Before reading in or storing the parameters for a product, you must first send the desired product number (1…255) to the sensor using Index 0x0404 ‘Product Number’. Then you can read or change the parameters for the set product number.

When the sensor is turned on the value 0 is always defaulted to as the current product number. The value of the current deviation Delta E to be read in using Index 0x0406 ‘Product Deviation’ always refers to the currently set product number.

Teaching background:

The special product ‘Background’ (Index 0x0403) is used for setting the product parameters for the background. If when evaluating the current measurement values the ‘Background’ product is determined to be the best fitting product, the corresponding bit is set (Byte 0, Bit 6).

In ‘Best-Fit’ mode this product can be used for example to detect that ‘no’ object was introduced.

In ‘Precise’ mode on the other hand this product can be used for example to define a range within which the actual values for an object should never lie.
5. Read current sensor status

Index 0x0407: This function reads out the complete current status of the sensor.

5.1. Explanations

Index 0x0407 Subindex 0x01 returns the bit-coded status of the sensor.

Meaning:
- **Byte 0 / Bit 1** Auto-Gain is active
- **Byte 0 / Bit 2** Ambient compensation is active
- **Byte 0 / Bit 3** Light source is turned on
- **Byte 0 / Bit 4** Red sensor channel overdriven
- **Byte 0 / Bit 5** Green sensor channel overdriven
- **Byte 0 / Bit 6** Blue sensor channel overdriven
- **Byte 1 / Bit 4** Best-Fit mode is active
- **Byte 1 / Bit 6** Reset to factory setting is running

Index 0x0407 Subindex 0x02 returns the current calibration status.

Meaning:
- 0 Idle Initialization value after sensor start
- 1 Success Calibration successfully completed
- 5 Busy Sensor being calibrated
- 7 Error Sensor calibration error

Index 0x0407 Subindex 0x03 returns the current status of ambient compensation (scattered light compensation).

Meaning:
- 0 Idle Initialization value after sensor start
- 1 Success Ambient compensation successfully completed
- 5 Busy Ambient compensation in process
- 7 Error Sensor ambient compensation error
6. **Read current measurement values**

Index 0x0408: Current CIELab color values are read out
Index 0x0409: Current XYZ tristimulus color values are read out
7. Process Data

Process data structure:

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 9 8</td>
<td>7 6 5 4 3 2 1 0</td>
</tr>
</tbody>
</table>

- **Signal Overload (Signal übersteuert)**
- **Multiple Products (mehrere Produkte)**
- **No Product (kein Produkt)**
- **Background (Hintergrund)**

Product Number (Produktnummer)

Explanations:

- The sensor sends 2 bytes of process data to the master
- The sensor receives no process data from the master

Byte 1 contain the product number (1…255) currently detected by the sensor

Byte 0 contain bit coded status information
- Signal Overload – the signal of the sensor is overloaded (Bit 7)
- Multiple Products – the actual color cannot be clearly assigned to the target values of only one product (Bit 6)
- No Product – the actual color does not fit to any target color (Bit 5)
- Background – the actual color fits the background (Bit 4)
8. **Service Data**

8.1. **System parameters**

<table>
<thead>
<tr>
<th>Index</th>
<th>Sub-index</th>
<th>Data format</th>
<th>Access</th>
<th>Value range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00D</td>
<td>0x01</td>
<td>Device Profile ID</td>
<td>UINT16</td>
<td>0x0001</td>
<td>Smart Sensor Profile</td>
</tr>
<tr>
<td></td>
<td>0x02</td>
<td>FunctionID</td>
<td>UINT16</td>
<td>0x8000</td>
<td>Device Identification</td>
</tr>
<tr>
<td></td>
<td>0x03</td>
<td>FunctionID</td>
<td>UNIT16</td>
<td>0x8002</td>
<td>PDV</td>
</tr>
<tr>
<td></td>
<td>0x04</td>
<td>FunctionID</td>
<td>UINT16</td>
<td>0x8003</td>
<td>Diagnosis</td>
</tr>
<tr>
<td></td>
<td>0x0E</td>
<td>Product-number</td>
<td>3 * UINT8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x0F</td>
<td>Background</td>
<td>3 * UINT8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x10</td>
<td>No Product</td>
<td>3 * UINT8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01F</td>
<td>0x00</td>
<td>Multiple Products</td>
<td>3 * UINT8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x01</td>
<td>Signal Overload</td>
<td>3 * UINT8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: System Parameters
8.2. Identification parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Data format</th>
<th>Access</th>
<th>Contents</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0010 (16)</td>
<td>Vendor Name</td>
<td>StringT (7 Byte)</td>
<td>R</td>
<td>BALLUFF</td>
</tr>
<tr>
<td>0x0011 (17)</td>
<td>Vendor Text</td>
<td>StringT (15 Byte)</td>
<td>R</td>
<td>www.balluff.com</td>
</tr>
<tr>
<td>0x0012 (18)</td>
<td>Product Name</td>
<td>StringT (19 Byte)</td>
<td>R</td>
<td>BFS 33M-GSI-F01-S75</td>
</tr>
<tr>
<td>0x0013 (19)</td>
<td>Product ID</td>
<td>StringT (7 Byte)</td>
<td>R</td>
<td>BFS000M</td>
</tr>
<tr>
<td>0x0014 (20)</td>
<td>Product Text</td>
<td>StringT (30 Byte)</td>
<td>R</td>
<td>True-Color-Sensor with IO-Link</td>
</tr>
<tr>
<td>0x0015 (21)</td>
<td>Serial Number</td>
<td>StringT (13 Byte)</td>
<td>R</td>
<td>e.g. 1870010AEB5A</td>
</tr>
<tr>
<td>0x0016 (22)</td>
<td>Hardware Revision</td>
<td>StringT (16 Byte)</td>
<td>R</td>
<td>e.g. 1.0</td>
</tr>
<tr>
<td>0x0017 (23)</td>
<td>Software Revision</td>
<td>StringT (30 Byte)</td>
<td>R</td>
<td>e.g. 1.0</td>
</tr>
<tr>
<td>0x0018 (24)</td>
<td>Application Specific Tag</td>
<td>StringT (16-32 Byte)</td>
<td>R/W</td>
<td>Factory setting: „Sensors Worldwide“</td>
</tr>
</tbody>
</table>

Table 2: Identification Parameters

8.3. Diagnostic parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Sub-index</th>
<th>Data format</th>
<th>Access</th>
<th>Value range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0024 (36)</td>
<td>Device Status</td>
<td>0x00</td>
<td>UINT8</td>
<td>R</td>
<td>0x00 = Device OK 0x03 = Functional Check For calibration and ambient compensation</td>
</tr>
<tr>
<td>0x0025 (37)</td>
<td>Detailed Device Status</td>
<td>0x00</td>
<td>3 * UINT8</td>
<td>R</td>
<td>0x00 0x00 0x00 No information</td>
</tr>
<tr>
<td>0x0028 (40)</td>
<td>Process Data Input</td>
<td>0x00</td>
<td>UINT16</td>
<td>R</td>
<td>See also process data</td>
</tr>
</tbody>
</table>

Table 3: Diagnostic Parameters
8.4. **System command**

<table>
<thead>
<tr>
<th>Index</th>
<th>Data format</th>
<th>Access</th>
<th>Value range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0002</td>
<td>System Command</td>
<td>UINT8</td>
<td>0x80 = Device reset</td>
<td>Warm start sensor</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>W</td>
<td>0x82 = Restore factory setting</td>
<td>Factory settings all parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0xA3 = Compensate Environment</td>
<td>Scattered light compensation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0xA4 = Calibration</td>
<td>Perform sensor calibration</td>
</tr>
</tbody>
</table>

Table 4 : System command

Explanations for Table 4

Value 0x80 (Device reset)

This function enables a warm start of the sensor.

Value 0x82 (Restore factory setting):

This system command resets all of the sensor’s parameters to their factory setting.
This process may take several seconds (until fully executed on the sensor).
8.5. Sensor-specific parameters

<table>
<thead>
<tr>
<th>Index</th>
<th>Sub-index</th>
<th>Data format</th>
<th>Access</th>
<th>Value range</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00BD</td>
<td>0x00</td>
<td>UINT32</td>
<td>R/W</td>
<td>1/2/4/16/64/256/1024</td>
<td>Averaging</td>
</tr>
<tr>
<td>0x00BE</td>
<td>0x01</td>
<td>UINT16</td>
<td>R/W</td>
<td>1…8</td>
<td>Gain</td>
</tr>
<tr>
<td></td>
<td>0x02</td>
<td>UINT32</td>
<td>R/W</td>
<td>0 = Off / 1 = On</td>
<td>Auto-Gain On/Off</td>
</tr>
<tr>
<td>0x00BF</td>
<td>0x00</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 = Off / 1 = On</td>
<td>Scattered light compensation On/Off</td>
</tr>
<tr>
<td>0x0400</td>
<td>0x01</td>
<td>UINT16</td>
<td>W</td>
<td>1…255 / 65535</td>
<td>Product Number (1…255) or 65535 for Background</td>
</tr>
<tr>
<td></td>
<td>0x02</td>
<td>FLOAT 32</td>
<td>W</td>
<td></td>
<td>Maximum Deviation (target / actual) for Product Number or Background</td>
</tr>
<tr>
<td></td>
<td>0x03</td>
<td>FLOAT 32</td>
<td>W</td>
<td></td>
<td>Reserved for future expansion</td>
</tr>
<tr>
<td>0x0401</td>
<td>0x00</td>
<td>FLOAT 32</td>
<td>R/W</td>
<td>Value > 0,0</td>
<td>Target value Y for calibration</td>
</tr>
<tr>
<td>0x0402</td>
<td>0x00</td>
<td>UINT16</td>
<td>R/W</td>
<td>0 = Best-Fit / 1 = Precise</td>
<td>Work mode</td>
</tr>
<tr>
<td>0x0403</td>
<td>0x01</td>
<td>UINT16</td>
<td></td>
<td>0 = Disabled / 1 = Enabled</td>
<td>Enable/disable background</td>
</tr>
<tr>
<td></td>
<td>0x02</td>
<td>FLOAT 32</td>
<td>R/W</td>
<td></td>
<td>CIELab L target value for background</td>
</tr>
<tr>
<td></td>
<td>0x03</td>
<td>FLOAT 32</td>
<td>R/W</td>
<td></td>
<td>CIELab a target value for background</td>
</tr>
<tr>
<td></td>
<td>0x04</td>
<td>FLOAT 32</td>
<td></td>
<td></td>
<td>CIELab b target value for background</td>
</tr>
<tr>
<td></td>
<td>0x05</td>
<td>FLOAT 32</td>
<td></td>
<td></td>
<td>Max. deviation actual/target for background</td>
</tr>
<tr>
<td></td>
<td>0x06</td>
<td>FLOAT 32</td>
<td></td>
<td></td>
<td>Reserved for future expansion</td>
</tr>
<tr>
<td>0x0404</td>
<td>0x00</td>
<td>UINT16</td>
<td></td>
<td>1…255</td>
<td>Product number</td>
</tr>
<tr>
<td>0x0405</td>
<td>0x01</td>
<td>UINT16</td>
<td></td>
<td>0 = Disabled / 1 = Enabled</td>
<td>Enable/disable product</td>
</tr>
</tbody>
</table>
Table 5: Sensor-specific Parameters

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Type</th>
<th>Access</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0405</td>
<td>Target CIELab L</td>
<td>FLOAT</td>
<td>R/W</td>
<td>CIELab L target value for product</td>
</tr>
<tr>
<td>0x03</td>
<td>Target CIELab a</td>
<td>FLOAT</td>
<td>R/W</td>
<td>CIELab a target value for product</td>
</tr>
<tr>
<td>0x04</td>
<td>Target CIELab b</td>
<td>FLOAT</td>
<td>R/W</td>
<td>CIELab b target value for product</td>
</tr>
<tr>
<td></td>
<td>Max. deviation actual/target for product</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x05</td>
<td>Target Delta E</td>
<td>FLOAT</td>
<td>R/W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reserved for future expansions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>Product Deviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0406</td>
<td>Actual Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>Status Sensor</td>
<td>UINT32</td>
<td>R</td>
<td>Bit-coded sensor status</td>
</tr>
<tr>
<td></td>
<td>Status Calibration</td>
<td>UINT8</td>
<td>R</td>
<td>Calibration status</td>
</tr>
<tr>
<td></td>
<td>Status Compensation</td>
<td>UINT8</td>
<td>R</td>
<td>Scattered light compensation status</td>
</tr>
<tr>
<td>0x0407</td>
<td>Actual CIELab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>Act. CIELab L</td>
<td>FLOAT</td>
<td>R</td>
<td>CIELab L measurement value</td>
</tr>
<tr>
<td>0x02</td>
<td>Act. CIELab a</td>
<td>FLOAT</td>
<td>R</td>
<td>CIELab a measurement value</td>
</tr>
<tr>
<td>0x03</td>
<td>Act. CIELab b</td>
<td>FLOAT</td>
<td>R</td>
<td>CIELab b measurement value</td>
</tr>
<tr>
<td>0x0408</td>
<td>Actual Tristimulus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x01</td>
<td>Act. Tristimulus X</td>
<td>FLOAT</td>
<td>R</td>
<td>Tristimulus X measurement value</td>
</tr>
<tr>
<td>0x02</td>
<td>Act. Tristimulus Y</td>
<td>FLOAT</td>
<td>R</td>
<td>Tristimulus Y measurement value</td>
</tr>
<tr>
<td>0x03</td>
<td>Act. Tristimulus Z</td>
<td>FLOAT</td>
<td>R</td>
<td>Tristimulus Z measurement value</td>
</tr>
</tbody>
</table>
Explanations for Table 5

Index 0x00BD (Averaging):

Averaging can be set in 7 steps (1/2/4/16/64/256/1024). The steps are chosen so that each higher level cuts the noise on the sensor signal by half. At the same time the time until a stable measurement value is present increases.

We recommend value 16 for standard applications.

Note: The best setting for the average value is a compromise between the available process time and the required accuracy of the measurement values.

Index 0x00BE (Gain):

This parameter is for switching between autogain and manual gain. When using manual gain, the value can be entered manually.

For standard applications the autogain function is recommended. When using this function the sensor automatically uses the optimal gain.

Alternatively the gain can be adjusted manually. The values range from 1....8. For low gain at short object distances, a value of 1 is selected for example, or a value of 8 for maximum gain at great object distances.,

Index 0x00BF (Enable Compensation):

This function is used to enable ambient compensation. First the ambient compensation must have been carried out. See Commissioning, Step 2 (Ambient light compensation).

Index 0x0400 (Teach-In-Procedure)

This function is used to teach products automatically.

Index 0x0401 (Calibration Target / Kalibrierung):

This function calibrates the sensor. See Commissioning, Step 3 (Calibrate sensor).

Index 0x0402 (Work Mode):

This parameter sets the work mode of the sensor. See Commissioning, Step 4 (Select work mode).

Index 0x0403 (Background Parameter):

This parameter is used to set the background. Values for CIELab L, a and b are defined. Subindex 0x01 enables background. Subindex 0x05 is used to set the allowed deviation for 'Precise' mode. In 'Best-Fit' mode the parameter is disabled and can be set to 0.0.

Note for deviation Delta E value: At a value of approx. 1 and higher a difference is detectable for a trained eye. At a value of 2 to 4 a color difference is perceived.
Index 0x0404 (Product Number):

This parameter is used to set the desired product number.

Index 0x0405 (Product Parameter):

Use this parameter to define the target value for the corresponding product. Values for CIELab L, a and b are defined. Subindex 0x01 enables the product. Subindex 0x05 sets the allowed deviation for ‘Precise’ mode. In ‘Best-Fit’ mode the parameter is disabled and can be set to 0.0.

Note for deviation Delta E value: At a value of approx. 1 and higher a difference is detectable for a trained eye. At a value of 2 to 4 a color difference is perceived.

Index 0x0406 (Product Deviation):

This index contains the deviation (Delta E) of the current sensor measurement values from the target values of the product number set with Index 0x0404 and the target values for the background.

Index 0x0407 (Actual Status):

This Index contains the complete sensor status. See also 4.6 (Read sensor status).

Index 0x0408 (Actual CIELab):

This Index contains the current CIELab measurement values (the actual color in the CIELab color space) of the sensor.

Index 0x0409 (Actual Tristimulus):

This Index contains the current XYX measurement values (the actual color in the XYZ color space) of the sensor.
9. Error Numbers

<table>
<thead>
<tr>
<th>Error</th>
<th>Error code</th>
<th>Additional code</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index not available</td>
<td>0x80</td>
<td>0x11</td>
<td>Index Number not available</td>
</tr>
<tr>
<td>Subindex not available</td>
<td>0x80</td>
<td>0x12</td>
<td>Subindex Number not available</td>
</tr>
<tr>
<td>Access denied</td>
<td>0x80</td>
<td>0x23</td>
<td>Access to index not allowed</td>
</tr>
<tr>
<td>Parameter value out of range</td>
<td>0x80</td>
<td>0x30</td>
<td>The value of a parameter lies outside the valid range</td>
</tr>
<tr>
<td>Parameter length overrun</td>
<td>0x80</td>
<td>0x33</td>
<td>The length of a parameter exceeds the permissible length</td>
</tr>
<tr>
<td>Parameter length underrun</td>
<td>0x80</td>
<td>0x34</td>
<td>The length of a parameter is below the permissible length</td>
</tr>
<tr>
<td>Function not available</td>
<td>0x80</td>
<td>0x35</td>
<td>Function not available</td>
</tr>
</tbody>
</table>

Table 6: Error Numbers