Handheld Programmer BIS U-870
Technical Description, User’s Guide
1 User instructions

1.1 CE Declaration of Conformity and user safety 4
1.2 Scope of delivery 4
1.3 About this manual 4
1.4 Structure of the manual 4
1.5 Typographical conventions 5
1.6 Symbols 5
1.7 Abbreviations 5

2 Safety

2.1 Intended use 6
2.2 General safety notes 6
2.3 Notes on using and returning rechargeable batteries 6
2.4 Meaning of the warning notes 6
2.5 Safety distance between transmitter antenna and persons 7
2.6 Impairment of transmission power 7

3 Getting started

3.1 Battery operation 8
3.2 Overview of WORKABOUT PRO 9
3.3 COLD RESET or battery replacement 9
3.4 Turning the Handheld Programmer (Workabout Pro 3) on/off 9
3.5 Turning the Handheld Programmer (Workabout Pro G2) on/off 10
3.6 Keyboard, display, and operating concept 10
3.7 Creating your own operating interface 10
3.8 Starting the RFID application 11
3.9 Operating menu overview 11

4 Basic knowledge

4.1 Function principle of Identification Systems 18
4.2 Product description 18
4.3 Control function 18
4.4 Files 18
4.5 Data carrier types 19

5 Operation

5.1 Keyboard, display, and operating concept 20
5.2 Reading data carriers 20
5.3 Writing data 21
5.4 Working with files 22
5.5 Connecting the Handheld Programmer to a PC/laptop 23

6 Technical data

Appendix 25
Index 28
1 User instructions

1.1 CE Declaration of Conformity and user safety

Declaration of Conformity
This product was developed and produced in compliance with applicable European standards and directives.

Note
You can request a Declaration of Conformity separately. For additional safety instructions, refer to Section „Safety“ on page 6.

1.2 Scope of delivery

Included in the scope of delivery:
- Handheld Programmer BIS U-870
- BIS Software-CD
- AC adapter
- Operating instructions in printed form (GER/ENG)

1.3 About this manual

This manual describes operation of the BIS U-870 Identification System together with the „Workabout Pro“ handheld computer made by PSION Teklogix GmbH.

This manual does not describe:
- Startup, operation, and care of the „Workabout Pro“ handheld computer,
- Installation and operation of accessories and expansion devices,
- Docking station and device interfaces.

Refer to the manuals from PSION Teklogix GmbH on the enclosed CD for this information. You can find the current documentation on the Internet at http://www.psion-teklogix.com/.

1.4 Structure of the manual

The manual is organized so that the sections build on each other.
Section 2: Basic safety information.
Section 3: First steps (starting the software).
Section 4: Processing data carriers and using files.
Section 5: Connecting the Handheld Programmer to the PC.
Section 6: Technical data for the Identification System.
1 User instructions

1.5 Typographical conventions

The following conventions are used in this manual.

Enumerations

Enumerations are shown as a list with an en-dash.
- Entry 1.
- Entry 2.

Actions

Action instructions are indicated by a preceding triangle. The result of an action is indicated by an arrow.
► Action instruction 1.
⇒ Action result.
► Action instruction 2.

Cross-references

Cross-references indicate where additional information on the topic can be found (see „Technical Data“ starting page 24).

Buttons

Buttons are set in square brackets, e.g. [Write].

Menu commands

Menu commands are joined with a greater-than symbol, e.g. „Start > Programs“ stands for the menu command <Programs> from the start menu.

Keys

Keys are set in angle brackets, e.g. confirm by pressing <Enter>.

1.6 Symbols

⚠️ Attention!
This symbol indicates a safety instruction that absolutely must be followed.

ℹ️ Note, tip
This symbol indicates general notes.

1.7 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIS</td>
<td>Balluff Identification System</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>EPC</td>
<td>Electronic Product Code</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable Logic Controller</td>
</tr>
<tr>
<td>TID</td>
<td>Tag Identifier</td>
</tr>
</tbody>
</table>
2 Safety

2.1 Intended use

The BIS U-870 Handheld Programmer is a component of the BIS U Identification System. Within the Identification System it checks, corrects, or initializes data carriers. The Handheld Programmer may only be used for this purpose in an industrial environment corresponding to Class A of the EMC Law. This description is valid for Handheld Programmers of series BIS U-870-1-008-…

2.2 General safety notes

Startup

Startup is only to be performed by trained specialists. Any damage resulting from unauthorized manipulation or improper use voids the manufacturer’s guarantee and warranty. When starting up, observe the instructions in the manuals from PSION Teklogix GmbH. The Handheld Programmer is only to be operated using the power supply approved for the device (see „Technical data“ on page 24).

Operation and testing

The operator is responsible for ensuring that locally applicable safety regulations are observed. In the event of defects and non-correctable faults in the Identification System, take the system out of service and secure it from unauthorized use.

2.3 Notes on using and returning rechargeable batteries

Attention!

Improper use, charging, disposal, or replacement of the rechargeable battery may result in an explosion! Replace the rechargeable batteries only with the same type or a type recommended by the manufacturer.

Note

Every user is legally obligated by the German Battery Ordinance to return all regular or rechargeable batteries that have been used or spent. Disposal with household waste is prohibited. Old batteries and rechargeable batteries can be returned without charge at your municipal collection point and anywhere that batteries and rechargeable batteries of the type in question are sold. You can also return the included batteries to the following address (with sufficient postage) after using them:

Balluff GmbH, Schurwaldstraße 9, 73765 Neuhausen a.d.F., Germany

Attention!

Use only Balluff-approved power supplies.

2.4 Meaning of the warning notes

Attention!

The pictogram used with the word „Attention“ warns of a situation that could harm someone’s health or damage equipment. Failure to observe these warning notes may result in injury or damage to equipment.

► Always take the described measures to prevent hazardous situations.
2 Safety

2.5 Safety distance between transmitter antenna and persons

The International Commission of Radiological Protection (ICRP) has specified limit values for the exposure of humans to RF fields. These limit values are also recommended by the ICNIRP (International Commission of Non Ionizing Radiological Protection). Acc. to IEC 62369 „Evaluation of human exposure to electromagnetic fields from short range devices (SRDS) in various applications over the frequency range 0 GHz to 300 GHz“, the following limit values apply for UHF systems in the frequency range 860-930 MHz:

- Electric field strength: $E = 41.25 \text{ V/m}$
- Magnetic field strength: $H = 0.111 \text{ A/m}$
- RF power density: $E \times H = 4.57 \text{ W/m}^2$

For the maximum permissible radiated power acc. to ETSI, the safety distance should be maintained. This means that persons should not remain closer than 26 cm to the transmitter antenna for longer periods of time (several hours without interruption). Brief periods near the antenna (distance < 0.26 m), even if repeated, pose no cause for concern according to current knowledge. Reducing the transmission power also reduces the required safety distance. With this device, a transmission power of 0.5 W is possible and the minimum safety distance that is to be maintained is $d = 0.13 \text{ m}$.

2.6 Impairment of transmission power

To avoid negatively impacting the transmission power, please make certain that there are no objects between the Handheld Programmer and the data carrier.
3.1 Battery operation

Note
The system components of the Handheld Programmer are powered by a 3.7 V rechargeable battery pack (Li-lon).

- Please charge rechargeable batteries provided by Balluff before using them for the first time!

Changing rechargeable batteries and operating life

A high-capacity rechargeable battery has a battery life of up to 48 hours after a full charge. Prerequisite: 200 read/write operations, after 3 minutes without being used, the device enters Suspend Mode. Data in the Handheld Programmer are retained for at least 10 to 15 minutes while the battery is being replaced.

Note
User data are saved by default in a RAM-based folder. The data in this RAM folder are lost if the main battery pack and backup battery pack are completely drained or if the device is restarted cold (see also „Cold Reset“, Section 3.3 on page 9). The safest place to store the data is an SD or MMC memory card (flash disk).

Attention!
Components can be damaged by using an incorrect charging current.
- Use the docking station or the Balluff-recommended charger/power supply for charging the battery pack.

Charging rechargeable batteries

- Insert the device into the docking station or connect the power supply

Note
When using a docking station, an uncharged battery pack may be inserted. Then simply dock the unit and turn it on.
3 Getting started

3.2 Overview of WORKABOUT PRO

BIS U-870

Figure 2: BIS U-870-1-008-X-000 Handheld Programmer

1 Read/write head for BIS U data carrier
2 Active surface
3 BIS U data carrier

Note
Hold elongated data carriers to the antenna of the Handheld Programmer sideways so that they can be detected by the Handheld Programmer.

3.3 COLD RESET or battery replacement

Note
Removing the battery pack or performing a cold reset will delete data, drivers, and settings from the unit’s RAM!
The „Total Recall“ program can be used to save the personal profile so that it is automatically loaded after a cold reset.
The „Total Recall“ program is located in the „Control Panel“ of the Workabout Pro.

Saving your own profile with „Total Recall“

– To open the Control Panel: <Windows Start> - <Settings> - <Control Panel>.
– Double-click on the <Total Recall> program (or select it and in the upper left corner select <File> and <open>).
– A new window opens; click <Create Profile>; the following window opens:
– Change <Type> to <AutoRestore>.
– Keep <Profile Location> (should be set to <\Flash Disk>).
– Click on <Next>.

3.4 Turning the Handheld Programmer (Workabout Pro 3) on/off

Requirements:
– Supply voltage is present (battery pack inserted and charged, device is in the docking station or power supply is connected).
3 Getting started

Attention!
This is a Class A product. When using this product indoors, the device may cause RF interference, requiring the user to take appropriate measures.

Turning on

Hold down <Power> for at least 1 second. As soon as the LED flashes green, release the <Power> button again. The start screen <Today> is displayed.

Note
If the device was used previously, it may be in Suspend mode; press <Power> to reactivate the unit. The screen in which you were working before the computer switched to Suspend mode is displayed again.

Turning off

– Suspend mode –
Press the <Power> button to turn off the WORKABOUT PRO 3 or
Select „Shutdown > Suspend“ from the Start menu.

3.5 Turning the Handheld Programmer (Workabout Pro G2) on/off

Requirements:
Supply voltage is present (battery pack inserted and charged, device is in the docking station or power supply is connected).

Attention!
This is a Class A product. When using this product indoors, the device may cause RF interference, requiring the user to take appropriate measures.

Turning on

Hold down <Enter> for at least 1 second. As soon as the LED flashes green, release the <ENTER> key again. The start screen <Today> is displayed.

Note
If the device was used previously, it may be in Suspend mode; press <ENTER> to reactivate the unit. The screen in which you were working before the computer switched to Suspend mode is displayed again.

Turning off

– Suspend mode –
Press <FN> (blue) and then <ENTER> to shut off the WORKABOUT PRO G2 or
Select „Shutdown > Suspend“ from the Start menu.

3.6 Keyboard, display, and operating concept

Familiarize yourself with the operating concept and characteristics of the WORKABOUT PRO. The operating manual can be found on the included CD or on the Internet at: http://www.psion-teklogix.com/

3.7 Creating your own operating interface

Note
The UHF CAEN Reader software development kit can be used to create a custom user interface. The software development kit can be downloaded from http://www.psion-teklogix.com/.
3.8 Starting the RFID application

On the Windows CE desktop, tap on "Start > Programs > BALLUFF RFID > BIS U RFID" (depending on the Windows CE® version, tap on the four-color Windows® logo instead of "Start"). (See Fig. 3) or,

- Tap the "BIS U RFID" shortcut on the desktop.
 ⇒ The "BIS U RFID" application starts.
 ⇒ The start screen is displayed.

3.9 Operating menu overview

After the start screen, the "Configuration" tab is displayed.

Figure 5: "Configuration" tab, "Reader" submenu
Getting started

“Reader” submenu

This tab is divided into three submenus: “Reader”, “Read ID” and “R/W”. The following settings can be made under the “Reader” menu:

Protocol
EPC C1G2 is set by default.

RF Regulation
Select the RF regulation applicable in the given region. Select either „ETSI_302208“ or „FCC_US“.

BitRate
DSB_ASK_M2_TX40RX160 is preset as the default BitRate.

Power
Power defines the power made available by the reader. Select a power from 10 mW to 500 mW.

Q-Value
Q-Value defines the minimum value of Q. This is the number of time windows per round during the anti-collision phase. The number of time windows is 2^Q. The value „3“ is preset as the default.

Session
Each of the four indicators refers to an identification session. After the data carrier (tag) has been identified, this changes the status of the indicator of the session in which it was just identified. „S0“ is preset as the default value.

Information window
Click icon A to call up the current program version.
Click icon B to call up details about the reader, such as the FW version.

Figure 6: „Configuration“ tab, „Reader“ submenu
Display
Select the display mode. The display in the Read ID window can be either ASCII or hexadecimal.

Read ID Options
The following settings are possible:

<table>
<thead>
<tr>
<th>Continuous Reading:</th>
<th>Continuous reading. If this option is enabled, read requests are carried out automatically at the set interval.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beep:</td>
<td>Output an audio signal. If „Beep“ is activated, one of the following options can be selected:</td>
</tr>
<tr>
<td></td>
<td>– Detection: If „Detection“ is activated, a signal sound is output following each successful read.</td>
</tr>
<tr>
<td></td>
<td>– Different Tag: If „Different Tag“ is activated, a signal sound is output following the first successful read.</td>
</tr>
</tbody>
</table>

Chrono
If this option is activated, the time for reading a defined number of different data carriers is output (stopwatch function).

EPC Filter
If this option is selected and the [SET] button is clicked, the EPC filter in the Read-ID window is used. The individual input fields have the following functions:

Mask:	Field of bytes in hexadecimal form
Mask Length:	Mask length in bits (not bytes)
Position:	Position at which the mask begins with its defined length

Example: EPC = „FF3804714277360000093188“, if the EPC filter with mask F380 is activated, the mask length is 16 (16 bits = 2 bytes) and the position is 4 (1/2 byte), the Read ID operation returns all data carriers with the following EPC code: „xF380xxxxxxxxxxxxxxxxxxx“.
3 Getting started

„R/W (Read/Write)“ submenu

Figure 8: „Configuration“ tab, „R/W“ submenu

R/W (Read/Write) Options
Select the display mode. The display in the R/W window can be either ASCII or hexadecimal.

Bank memory
Defines for the R/W window which memory bank of the data carrier is to be read and written. Select from the following memory banks: RESERVED, EPC, TID, USER.

<table>
<thead>
<tr>
<th>Memory Bank</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESERVED</td>
<td>Contains the destruction and/or access passwords. This memory bank is read-only.</td>
</tr>
<tr>
<td>EPC</td>
<td>EPC is the ID of the data carrier. Depending on the setting of the second selection list, you can read and write 96, 240 or 512 bits. Note: Only available for EPC C1 G2 Air Protocol Version 1.2.</td>
</tr>
<tr>
<td>TID</td>
<td>Memory bank for the manufacturer information of the data carrier. You can read 32 or 64 bits (read-only).</td>
</tr>
<tr>
<td>USER</td>
<td>Memory bank for reading and writing user data with 96 or 512 bits.</td>
</tr>
</tbody>
</table>

Use access password
You can protect the EPC memory bank of the data carrier with a password. To do this, activate the check box to the left of „Use access password“ and define an access password for writing a new EPC.
Getting started

„Read ID“ tab

You can read the ID of a data carrier on the „Read ID“ tab.

![Read ID tab](image)

[Read]
The [Read] button can be used to start the read operation.

[Clear]
Use this button to delete the data that were read from the information window.

Information window
The data that were read are displayed here. The number combination shown in the „EPC“ column is the electronic product code (EPC - Electronic Product Code) of the data carrier. The number in the „#“ column shows the total number of successful read operations.

Sum of Tags
Shows how many different data carriers were read.

Sum of Reads
Shows the total number of successful read operations.
On the „R/W“ tab, you can read information from the memory of a data carrier or write information to the memory.

Figure 10: „R/W“ tab

Operate
Status indicator. As soon as reading or writing begins, the status indicator flashes yellow.

[Read]
This button can be used to start a read operation. Once started, the label of this button changes to [Abort] (abort read operation). If the read operation was successful, „Reading succeeded“ appears in red text to the right of the [Read] button and the result is displayed under the [Read] button.

[Copy]
This button can be used to copy the read data in order to use them during the write operation.

[Write]
Start a write operation. Once the write operation is started, the label of this button changes to [Abort] (abort write operation). If the write operation was successful, „Writing succeeded“ appears in red text to the right of the [Write] button and the result is displayed under the [Write] button.

[Clear]
Clears the data read so far from the information window and the input window.
3 Getting started

„File Browser“ and „About“ tabs

On the „File Browser“ tab, you can save the read data, load existing data or export Read-ID data.
On the „About“ tab, information on the software version and the manufacturer details are displayed.

[Open]
Opens the „Open file...“ dialog. You can select and open a saved file. The loaded data are displayed on the „R/W“ tab below the [Write] button.

[Save]
Opens the „Save file as...“ dialog. The data (from the information window below the [Read] button in the „R/W“) tab can be saved in a file.

[Export]
Opens the „Save file as...“ dialog. The read ID Data from the information window in the „Read ID“ tab can be saved in a file.
4.1 Function principle of Identification Systems

The portable BiS U Identification System is classified as a non-contacting system with read and write function. This allows it to transport not only programmed information that is fixed in the data carrier, but also to collect and pass on current information.

The main components of the portable BiS U Identification System are:
- Handheld Programmer,
- data carriers.

The main areas of application are:
- In production for controlling material flow (e.g. in model-specific processes, in workpiece transport with conveying systems, for acquiring safety-relevant data),
- In tool coding and monitoring,
- In process equipment organization,
- In warehousing for monitoring stock movement and levels,
- In transporting and conveying,
- In waste disposal for quantity-based fee assessment.

4.2 Product description

Handheld Programmer BiS U-870:
- Plastic housing,
- Reading/writing using built-in antenna,
- Power for system components provided by 3.7 V lithium-ion battery pack,
- Editor function for editing data to be read or written,
- Saving/loading files.

Note

The UHF CAEN Reader software development kit can be used to create a custom user interface. The software development kit can be downloaded from http://www.psisonteklogix.com/.

4.3 Control function

The Handheld Programmer is the link between data carrier and controlling system. The Handheld Programmer can be used to check, correct or initialize data carriers.

The data read on the equipment can be stored in the Handheld Programmer and sent at a later time to the host system.

Host systems may be the following:
- A control computer (e.g. industrial PC),
- A PLC.

4.4 Files

Data read from a data carrier can be saved under a file name or saved files can be loaded.

Note

User data are saved by default in a RAM-based folder. The data in this RAM folder are lost if the main battery pack and backup battery pack are fully drained or if the device is restarted cold. The safest place to store the data is an SD or MMC memory card (flash disk).
File format

<table>
<thead>
<tr>
<th>Type of memory bank (0x00=RESERVED, 0x01=EPC, 0x02=TID, 0x03=USER)</th>
<th>No. of bytes</th>
<th>Data carrier data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 byte</td>
<td>2 bytes</td>
<td>n bytes</td>
</tr>
</tbody>
</table>

Example: Data carrier file from the USER memory bank with 12 bytes of data.
Data: ABCDEFGHIJKL

Contents of the data carrier file in HEX format:
03 0C 00 41 42 43 44 45 46 47 48 49 4A 4B 4C

4.5 Data carrier types

Only data carriers that satisfy standard EPC C1G2 can be used with the BIS U-870. You can obtain more detailed information upon request.
5 Operation

5.1 Keyboard, display and operating concept

Familiarize yourself with the operating concept and characteristics of the WORKABOUT PRO. The operating manual can be found on the included CD or on the Internet at: http://www.psion-teklogix.com/

5.2 Reading data carriers

Start Balluff RFID Reader.

► Make the desired settings on the "Configuration" tab in the "Reader", "Read ID" and "R/W" submenus (for information, see Section „Getting started“ beginning on page 8).

![Figure 13: „Configuration“ tab and the submenus](image)

Switch to the „Read ID“ tab.

► Click the [Read] button.

► Hold the sensing surface of the Handheld Programmer to the data carrier you wish to read.

⇒ The data that are read are displayed in the information window in columns „EPC“ and „#“.

⇒ „EPC“ is the electronic product code (EPC - Electronic Product Code) of the data carrier. The number in the „#“ column shows the total number of read data carriers.

⇒ „Sum of Tags“ shows how many different data carriers were read.

⇒ „Sum of Reads“ shows the total number of all data carriers that were read.

![Figure 14: Start read operation](image)
Read memory of the data carrier

To read the memory of a data carrier, hold the sensing surface of the Handheld Programmer to the data carrier you wish to read.

- Click the [Read] button.
 ⇒ The „Operate“ field begins to flash yellow and the label of the [Read] button changes to [Abort] (abort read operation).

- If the read operation was successful, „Reading succeeded“ appears in red text to the right of the [Read] button and the result is displayed under the [Read] button.

![Figure 15: Write operation successful](image)

5.3 Writing data

To write the memory of a data carrier, hold the sensing surface of the Handheld Programmer to the data carrier to which you wish to write.

- Click the [Copy] button to insert the previously read data in the input field below the [Write] button or click the input field under the [Write] button to enter the data manually.

- Click the [Write] button.
 ⇒ The „Operate“ field begins to flash yellow and the label of the [Write] button changes to [Abort] (abort write operation).

- If the write operation was successful, „Writing succeeded“ appears in red text to the right of the [Write] button.

![Figure 16: Write operation successful](image)
5 Operation

Read or write error

Note
If reading a data carrier or writing to the memory of a data carrier was not successful, the „Operate“ field illuminates red. Make certain that there are no objects between the handheld device and the data carrier and restart the read or write operation.

5.4 Working with files

Note
Data read from a data carrier can be saved under a file name. Already saved data can be opened and further processed.

Saving files

Data from the R/W tab can be saved.

- Switch to the „File Browser“ tab.
- Click the [Save] button.
- The „Save as…“ dialog opens.
- Select storage location and file name and confirm with [OK].
- The data that were read are saved as a „.bis file“.

Loading files

- To open a saved file, click the [Open] button.
- The „Open file…“ dialog opens.
- Select file and confirm with [OK].
- The loaded data are displayed on the „R/W“ tab below the [Write] button.

Figure 17: „File Browser“ tab

Exporting Read ID

- To export the read ID data from the information window in the „Read ID“ tab, click the [Export] button.
- The „Save as…“ dialog opens.
- Select storage location and file name and confirm with [OK].
- The data that were read are saved as a „.bis file“.

Note
All data records on the „R/W“ tab are saved in the file with data type and number of bytes (see also „Files“ on page 18). User data are saved by default in a RAM-based folder. The data in this RAM folder are lost if the main battery pack and backup battery pack are completely drained or if the device is restarted cold (see also „Cold Reset“, Section 3.3 on page 9). The safest place to store the data is an SD or MMC memory card (flash disk).
5.5 Connecting the Handheld Programmer to a PC/laptop

The Handheld Programmer can optionally be connected to a PC/laptop using Bluetooth, WLAN, or USB (docking station). Files can be sent between the Handheld Programmer and PC/laptop using the "ActiveSync" software.

Note

Depending on the installed option, refer to the WORKABOUT PRO operating manual for the exact procedure for connecting the Handheld Programmer to the PC. Operation of the "ActiveSync" software is described in its online help.

Data transmission

- Connect Handheld Programmer to PC.
- In "ActiveSync" (PC), select the "Search device" menu option.
- Or
- In Windows Explorer (PC), navigate to the "Mobile device" entry.
- From Explorer you can exchange files between the PC and WORKABOUT PRO.

Charge life

- Note

A high-capacity rechargeable battery has a battery life of up to 48 hours after a full charge. Prerequisite: 200 read/write operations, after 3 min. without being used, the device enters Suspend Mode. Data in the Handheld Programmer are retained for at least 10 to 15 minutes while the battery is being replaced.
Handheld Programmer
BIS U-870

6 Technical data

Dimensions

![BIS U-870-1-008-X-000 dimensions (in mm)](image)

Figure 18: BIS U-870-1-008-X-000 dimensions (in mm)

<table>
<thead>
<tr>
<th>Housing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (including battery pack)</td>
<td>585 grams</td>
</tr>
<tr>
<td>Keyboard</td>
<td>46 keys, alphanumeric</td>
</tr>
<tr>
<td>Display</td>
<td>Touchscreen TFT 3.6”</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP 65</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Read head connection</td>
<td>Built-in antenna</td>
</tr>
<tr>
<td>Charging socket</td>
<td>2.5 mm jack socket</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrical data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating voltage Vs</td>
<td>3.7 V</td>
</tr>
<tr>
<td>Current consumption</td>
<td></td>
</tr>
<tr>
<td>Normal operation</td>
<td>Approx. 300 mA</td>
</tr>
<tr>
<td>Reading/writing</td>
<td>Approx. 450 mA</td>
</tr>
<tr>
<td>Voltage and current supply</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>3.7 V, lithium-ion rechargeable battery</td>
</tr>
<tr>
<td>Capacity</td>
<td>4000 mAh</td>
</tr>
<tr>
<td>Max. charging voltage</td>
<td>5 V</td>
</tr>
<tr>
<td>Charging current</td>
<td>0.9 A</td>
</tr>
<tr>
<td>Charging time</td>
<td>5 h</td>
</tr>
<tr>
<td>Battery lifeS</td>
<td>8 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>-10 °C…+50 °C</td>
</tr>
<tr>
<td>EMC</td>
<td></td>
</tr>
<tr>
<td>– EN 61000-4-2/3/4/5/6</td>
<td>Severity level 3A/3A///~/</td>
</tr>
<tr>
<td>– EN 55011</td>
<td>Gr. 1, Cl. A</td>
</tr>
<tr>
<td>Vibration/shock</td>
<td>EN 60068 Part 2-6/27/29/64/32</td>
</tr>
</tbody>
</table>
Handheld Programmer

BIS U-870

Part designation code

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIS U-870-1-008-X-000</td>
<td>Balluff Identification System Series U Read/Write System</td>
</tr>
<tr>
<td>870</td>
<td>Hardware type: Portable reader with integrated read/write head</td>
</tr>
<tr>
<td>1</td>
<td>Interface: Bluetooth</td>
</tr>
<tr>
<td>008</td>
<td>Software type: Balluff software for BIS _-87x-...</td>
</tr>
<tr>
<td>X</td>
<td>Language: Multilingual</td>
</tr>
<tr>
<td>000</td>
<td>Additional features: Standard</td>
</tr>
<tr>
<td>001</td>
<td>WLAN Module: Model No: RA2041, Designation: 802.11b/g Direct Sequence (DS)-Extended Range Radio (CCX-Certified)</td>
</tr>
<tr>
<td>002</td>
<td>1D Scanner: Model No.: WA9000-G1, Designation: 1D xMod SE1223 High Performance Scanner</td>
</tr>
<tr>
<td>003</td>
<td>2D Scanner: Model No: WA9212-G1, Designation: 2D Slim Pod HHP 5180 Imager</td>
</tr>
<tr>
<td>004</td>
<td>With WLAN and 1D barcode scanner</td>
</tr>
<tr>
<td>005</td>
<td>With WLAN and 2D barcode/matrix scanner</td>
</tr>
</tbody>
</table>

Accessory (scope of delivery)

<table>
<thead>
<tr>
<th>Type</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>11023835</td>
</tr>
</tbody>
</table>

Accessories (optional, not included in scope of delivery)

<table>
<thead>
<tr>
<th>Type</th>
<th>Ordering code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement stylus (package of 5)</td>
<td>11023833</td>
</tr>
<tr>
<td>Docking Station</td>
<td>11023834</td>
</tr>
<tr>
<td>Handle</td>
<td>11023836</td>
</tr>
</tbody>
</table>
Handheld Programmer
BIS U-870

Appendix

Handheld Programmer charger accessory

Features
- Consisting of charger/power supply with 2.5 mm jack plug,
- Primary connector EURO, UK, US interchangeable (included),
- CE, UL approvals.

Technical data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary voltage U_{primary}</td>
<td>100-240 VAC</td>
</tr>
<tr>
<td>Secondary voltage U_{sec}</td>
<td>6 VDC ± 5 %</td>
</tr>
<tr>
<td>Input frequency F_{primary}</td>
<td>47-63 Hz</td>
</tr>
<tr>
<td>Secondary current I_{sec}</td>
<td>2.1 A</td>
</tr>
<tr>
<td>Ambient temperature T_A</td>
<td>−40 °C ... + 70 °C</td>
</tr>
<tr>
<td>Material</td>
<td>PPE-V1-125 °C</td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
</tr>
<tr>
<td>Part no.</td>
<td>11023835</td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
</tr>
</tbody>
</table>

Accessories Docking station

Features
- Consisting of charger/power supply with charge status indicator and charging cradle
- Primary connector EURO, UK, US interchangeable (included)
- CE, UL approvals.

Charge status indicator
- LED red Battery charged
- LED red flashing Battery charging

Technical data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary voltage U_{primary}</td>
<td>100-240 VAC</td>
</tr>
<tr>
<td>Secondary voltage U_{sec}</td>
<td>6 VDC ± 5 %</td>
</tr>
<tr>
<td>Input frequency F_{primary}</td>
<td>50-60 Hz</td>
</tr>
<tr>
<td>Secondary current I_{sec}</td>
<td>800 mA</td>
</tr>
<tr>
<td>Ambient temperature T_A</td>
<td>−40 °C ... + 70 °C</td>
</tr>
<tr>
<td>Material</td>
<td>PPE-V1-125 °C</td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
</tr>
<tr>
<td>Part no.</td>
<td>11023834</td>
</tr>
<tr>
<td>Color</td>
<td>Black</td>
</tr>
</tbody>
</table>
ASCII table

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Control Code</th>
<th>ASCII</th>
<th>Decimal</th>
<th>Hex</th>
<th>ASCII</th>
<th>Decimal</th>
<th>Hex</th>
<th>ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>Ctrl @ NUL</td>
<td></td>
<td>43</td>
<td>2B</td>
<td>+</td>
<td>86</td>
<td>56</td>
<td>V</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>Ctrl A SOH</td>
<td></td>
<td>44</td>
<td>2C</td>
<td>,</td>
<td>87</td>
<td>57</td>
<td>W</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>Ctrl B STX</td>
<td></td>
<td>45</td>
<td>2D</td>
<td>-</td>
<td>88</td>
<td>58</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td>Ctrl C ETX</td>
<td></td>
<td>46</td>
<td>2E</td>
<td></td>
<td>89</td>
<td>59</td>
<td>Y</td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td>Ctrl D EOT</td>
<td></td>
<td>47</td>
<td>2F</td>
<td>/</td>
<td>90</td>
<td>5A</td>
<td>Z</td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td>Ctrl E ENQ</td>
<td></td>
<td>48</td>
<td>30</td>
<td>0</td>
<td>91</td>
<td>5B</td>
<td>[</td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td>Ctrl F ACK</td>
<td></td>
<td>49</td>
<td>31</td>
<td>1</td>
<td>92</td>
<td>5C</td>
<td>\</td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td>Ctrl G BEL</td>
<td></td>
<td>50</td>
<td>32</td>
<td>2</td>
<td>93</td>
<td>5D</td>
<td>]</td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td>Ctrl H BS</td>
<td></td>
<td>51</td>
<td>33</td>
<td>3</td>
<td>94</td>
<td>5E</td>
<td>^</td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td>Ctrl I HT</td>
<td></td>
<td>52</td>
<td>34</td>
<td>4</td>
<td>95</td>
<td>5F</td>
<td>_</td>
</tr>
<tr>
<td>10</td>
<td>0 A</td>
<td>Ctrl J LF</td>
<td></td>
<td>53</td>
<td>35</td>
<td>5</td>
<td>96</td>
<td>60</td>
<td>`</td>
</tr>
<tr>
<td>11</td>
<td>0 B</td>
<td>Ctrl K VT</td>
<td></td>
<td>54</td>
<td>36</td>
<td>6</td>
<td>97</td>
<td>61</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>0 C</td>
<td>Ctrl L FF</td>
<td></td>
<td>55</td>
<td>37</td>
<td>7</td>
<td>98</td>
<td>62</td>
<td>B</td>
</tr>
<tr>
<td>13</td>
<td>0 D</td>
<td>Ctrl M CR</td>
<td></td>
<td>56</td>
<td>38</td>
<td>8</td>
<td>99</td>
<td>63</td>
<td>c</td>
</tr>
<tr>
<td>14</td>
<td>0 E</td>
<td>Ctrl N SO</td>
<td></td>
<td>57</td>
<td>39</td>
<td>9</td>
<td>100</td>
<td>64</td>
<td>d</td>
</tr>
<tr>
<td>15</td>
<td>0 F</td>
<td>Ctrl O SI</td>
<td></td>
<td>58</td>
<td>3A</td>
<td>:</td>
<td>101</td>
<td>65</td>
<td>e</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>Ctrl P DLE</td>
<td></td>
<td>59</td>
<td>3B</td>
<td>;</td>
<td>102</td>
<td>66</td>
<td>f</td>
</tr>
<tr>
<td>17</td>
<td>11</td>
<td>Ctrl Q DC1</td>
<td></td>
<td>60</td>
<td>3C</td>
<td><</td>
<td>103</td>
<td>67</td>
<td>g</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
<td>Ctrl R DC2</td>
<td></td>
<td>61</td>
<td>3D</td>
<td>=</td>
<td>104</td>
<td>68</td>
<td>h</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>Ctrl S DC3</td>
<td></td>
<td>62</td>
<td>3E</td>
<td>></td>
<td>105</td>
<td>69</td>
<td>i</td>
</tr>
<tr>
<td>20</td>
<td>14</td>
<td>Ctrl T DC4</td>
<td></td>
<td>63</td>
<td>3F</td>
<td>?</td>
<td>106</td>
<td>6 A</td>
<td>j</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>Ctrl U NAK</td>
<td></td>
<td>64</td>
<td>40</td>
<td>Ø</td>
<td>107</td>
<td>6 B</td>
<td>k</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>Ctrl V SYN</td>
<td></td>
<td>65</td>
<td>41</td>
<td>A</td>
<td>108</td>
<td>6 C</td>
<td>L</td>
</tr>
<tr>
<td>23</td>
<td>17</td>
<td>Ctrl W ETB</td>
<td></td>
<td>66</td>
<td>42</td>
<td>B</td>
<td>109</td>
<td>6 D</td>
<td>m</td>
</tr>
<tr>
<td>24</td>
<td>18</td>
<td>Ctrl X CAN</td>
<td></td>
<td>67</td>
<td>43</td>
<td>C</td>
<td>110</td>
<td>6 E</td>
<td>n</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>Ctrl Y EM</td>
<td></td>
<td>68</td>
<td>44</td>
<td>D</td>
<td>111</td>
<td>6 F</td>
<td>o</td>
</tr>
<tr>
<td>26</td>
<td>1 A</td>
<td>Ctrl Z SUB</td>
<td></td>
<td>69</td>
<td>45</td>
<td>E</td>
<td>112</td>
<td>7 0</td>
<td>p</td>
</tr>
<tr>
<td>27</td>
<td>1 B</td>
<td>Ctrl \ ESC</td>
<td></td>
<td>70</td>
<td>46</td>
<td>F</td>
<td>113</td>
<td>7 1</td>
<td>q</td>
</tr>
<tr>
<td>28</td>
<td>1 C</td>
<td>Ctrl \ FS</td>
<td></td>
<td>71</td>
<td>47</td>
<td>G</td>
<td>114</td>
<td>7 2</td>
<td>r</td>
</tr>
<tr>
<td>29</td>
<td>1 D</td>
<td>Ctrl] GS</td>
<td></td>
<td>72</td>
<td>48</td>
<td>H</td>
<td>115</td>
<td>7 3</td>
<td>s</td>
</tr>
<tr>
<td>30</td>
<td>1 E</td>
<td>Ctrl ^ RS</td>
<td></td>
<td>73</td>
<td>49</td>
<td>I</td>
<td>116</td>
<td>7 4</td>
<td>t</td>
</tr>
<tr>
<td>31</td>
<td>1 F</td>
<td>Ctrl _ US</td>
<td></td>
<td>74</td>
<td>4 A</td>
<td>J</td>
<td>117</td>
<td>7 5</td>
<td>u</td>
</tr>
<tr>
<td>32</td>
<td>20</td>
<td>Ctrl \ SP</td>
<td></td>
<td>75</td>
<td>4 B</td>
<td>K</td>
<td>118</td>
<td>7 6</td>
<td>V</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>!</td>
<td></td>
<td>76</td>
<td>4 C</td>
<td>L</td>
<td>119</td>
<td>7 7</td>
<td>W</td>
</tr>
<tr>
<td>34</td>
<td>22</td>
<td>“</td>
<td></td>
<td>77</td>
<td>4 D</td>
<td>M</td>
<td>120</td>
<td>7 8</td>
<td>X</td>
</tr>
<tr>
<td>35</td>
<td>23</td>
<td>#</td>
<td></td>
<td>78</td>
<td>4 E</td>
<td>N</td>
<td>121</td>
<td>7 9</td>
<td>Y</td>
</tr>
<tr>
<td>36</td>
<td>24</td>
<td>$</td>
<td></td>
<td>79</td>
<td>4 F</td>
<td>O</td>
<td>122</td>
<td>7 A</td>
<td>Z</td>
</tr>
<tr>
<td>37</td>
<td>25</td>
<td>%</td>
<td></td>
<td>80</td>
<td>50</td>
<td>P</td>
<td>123</td>
<td>7 B</td>
<td>{</td>
</tr>
<tr>
<td>38</td>
<td>26</td>
<td>&</td>
<td></td>
<td>81</td>
<td>51</td>
<td>Q</td>
<td>124</td>
<td>7 C</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>27</td>
<td>’</td>
<td></td>
<td>82</td>
<td>52</td>
<td>R</td>
<td>125</td>
<td>7 D</td>
<td>}</td>
</tr>
<tr>
<td>40</td>
<td>28</td>
<td>(</td>
<td></td>
<td>83</td>
<td>53</td>
<td>S</td>
<td>126</td>
<td>7 E</td>
<td>–</td>
</tr>
<tr>
<td>41</td>
<td>29</td>
<td>)</td>
<td></td>
<td>84</td>
<td>54</td>
<td>T</td>
<td>127</td>
<td>7 F</td>
<td>DEL</td>
</tr>
</tbody>
</table>
Index

A
Abbreviations 5
Dimensions 24
Charging battery 8
Connecting 23
Connections 24
ASCII table 27

B
Meaning of the warning notes 6
Intended use 6
24 Operating conditions

C
Cold Reset 9

D
Files 18
Reading data carriers 20
Data carrier types 19
Data transmission 23
Docking station 26

E
Areas of application 18
Electrical data 24
EPC Filter 13

F
Function principle of identification systems 18

G
Housing 24

H
Handheld Programmer
Product description 18
Main components 18

L
Charger 26
Scope of delivery 4

P
Product description 18

S
Safety 6
Control function 18
Symbols 5

T
Technical data
Dimensions 24
Type designation code 25

V
Use
Intended 6
Improper 6

Z
25 Accessories