

BIS M-60_8 PROFINET IO

Technical Description, User's Guide

english

www.balluff.com

1	Notes to the user	4
	1.1 About this manual	4
	1.2 Structure of the manual	4
	1.3 Typographical conventions	4
	1.4 Symbols	4
	1.5 Abbreviations	5
2	Safety	6
	2.1 Intended use	6
	2.2 General safety notes	6
	2.3 Meaning of the warning notes	6
3	Getting Started	7
	3.1 Quick start	7
4	Basic Knowledge	11
	4.1 Function principle of Identification Systems	11
	4.2 Product description	11
	4.3 Control function	12
	4.4 Data integrity	13
_	4.5 Bus connection	13
5	Technical Data	14
	5.1 BIS M-6008	14
	5.2 BIS M-6028	16
6	Installation	18
	6.1 Processor installation	18
	6.2 Interfaceinformation/Wiring diagrams	19
7	Bus connection	21
	7.1 Project administration	21
	7.2 Device name and IP address	21
8	Setting the processor parameters	22
	8.1 Basic knowledge	22
	8.2 Setting parameters	24
9	Device Function	28
	9.1 Function principle BIS M-60_8	28
	9.2 Function indicators	36
	9.3 Examples	38
Α	Appendix	52
	A.1 BIS M-6008 Ordering information	52
	A.2 BIS M-6028 Ordering information	53
	Index	55

Notes to the user

1.1	About this manual	This manual describes processors in the series BIS M-60_8 identification system as well as startup instructions for immediate operation.	
1.2	Structure of the manual	The manual is organized so that the sections build on each other Section 2: Basic safety information Section 3: Key steps for installing the Identification System Section 4: Introduction to the material Section 5: Technical data for the processor Section 6: Mechanical and electrical connection Section 7: Logging the processor on to the network Section 8: User-defined settings for the processor Section 9: Processor and host system interaction	
1.3 Typographical conventions The following conventions are used in this manual: Enumerations Enumerations are shown as a list with en-dash. - Entry 1, - entry 2.		Enumerations are shown as a list with en-dash.	
	Actions	 Action instructions are indicated by a preceding triangle. The result of an action is indicated by an arrow. ► Action instruction 1. ⇒ Action result. ► Action instruction 2. 	
	Syntax	 Numbers Decimal numbers are shown without additional indicators (e.g. 123), Hexadecimal numbers are shown with the additional indicator hex (e.g. 00hex). Parameters Parameters are shown in italics (e.g. CRC_16).	
	Directory paths References to paths in which data are stored or are to be saved to are shown in sr PROJECT:\DATA TYPES\USER DEFINED).		
	Cross-references	Cross-references indicate where additional information on the topic can be found (see Technical Data" starting page 14).	
1.4	Symbols	Attention! This symbol indicates a safety instruction that must be followed.	
		Note, tip This symbol indicates general notes.	

Notes to the user

1.5

C E E C C M F F	BIS CRC DIL EEPROM EMC GSD GSDML MAC-ID PC PNO PLC	Balluff Identification System Cyclic Redundancy Check Dual in-line package (also Dual In-Line) Electrically Erasable and Programmable Read Only Memory Electromagnetic Compatibility General Station Description General Station Description Markup Language Media Access Control Identifier Personal Computer Profibus Nutzerorganisation e.V. (organized user group) Programmable Logic Controller
--------------------------------------	--	--

2 Safety

2.1	Intended use	The BIS M-60_8 processor is a component of the BIS M Identification System. Within the Identi- fication System it is used to for connecting to a host computer (PLC, PC). It may be used only for this purpose in an industrial environment corresponding to Class A of the EMC Law. This description is valid for processors in series BIS M-60_8
2.2	General safety notes	 Installation and startup Installation and startup are to be performed only by trained personnel. Any damage resulting from unauthorized manipulation or improper use voids the manufacturer's guarantee and warranty. When connecting the processor to an external controller, observe proper selection and polarity of the connection as well as the power supply (see "Installation" section on page 18). The processor may be operated only using an approved power supply (see "Technical Data starting page 14). Operation and testing The operator is responsible for ensuring that local safety regulations are observed. When defects and non-clearable faults in the Identification System occur, take the system out of section and testing of the local safety regulations.
2.3	Meaning of the warning notes	Attention! The pictogram together with the expression "Attention!" warns of a possible hazardous situation for the health of persons or of equipment damage. Disregard of

these warning notes may result in injury or damage to equipment.Always observe the described measures for preventing this danger.

Getting Started

3.1 Quick start

Mechanical connection

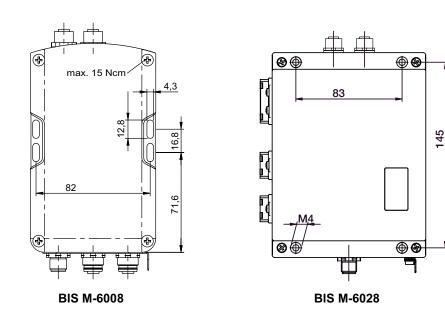
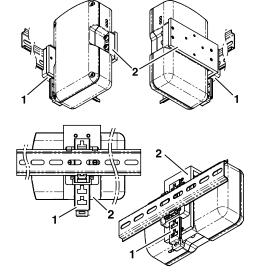
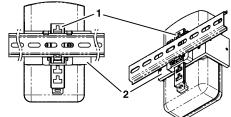
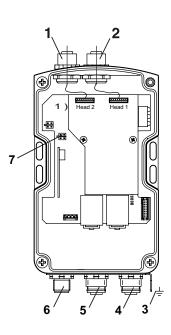



Fig. 1: Mechanical connection (dimensions in mm)

► Attach processor using 4 M4 screws.

Installation with support rail (accessory for BIS M-6008)




Fig. 2: Mounting using rail holder BIS Z-HW-001 (accessory)

- 1 Rail holder
- 2 Mounting brackets

Getting Started

Electrical connection

BIS M -6008

Function

+Vs

n.c.

-Vs

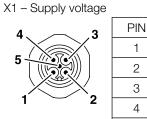
n.c.

n.c.

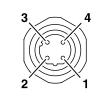
Function

TxD

RxD

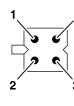

GND

n.c.

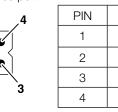

Fig. 3: Electrical connection BIS M-6008

- 1 Head 2 Read/write head 2
- 2 Head 1 Read/write head 1
- **3** Function ground FE

- 4 X3 PROFINET Port 2
- 5 X2 PROFINET Port 1
- 6 X1 Supply voltage
- 7 X7 Service port



X2, X3 – PROFINET



PIN	Function
1	TD+
2	RD+
3	TD-
4	RD-

X7 - Service port

 \mathbb{A}

5

Make the ground connection either directly or using an RC combination to ground. When making your connection to the Ethernet, be sure that the shield is perfectly connected to the connector body. R **Getting Started**

BIS M -6028

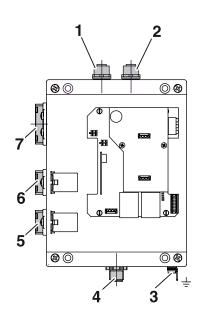
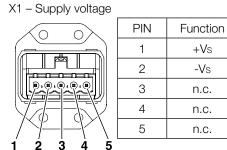



Fig. 4: Electrical connection BIS M-6028

- 1 Head 2 Read/write head 2
- 2 Head 1 Read/write head 1
- 3 Function ground FE

- 4 X4 Service port
- 5 X3 PROFINET Port 2
- 6 X2 PROFINET Port 1
- 7 X1 Supply voltage

X2, X3 - PROFINET

р ^л ъ
8 1

Function
TD+
TD-
RD+
n.c.
n.c.
RD-
n.c.
n.c.

X4 - Service port

PIN	Function
1	n.c.
2	TxD
3	GND
4	RxD

Getting Started

Project administration	 Project administration is accomplished using the project administration tool "SIMATIC NCM PC Manager" or using "STEP 7". The following steps are required for integrating a BIS M-60_8 processor: Install the GSDML file of the IO device in the hardware configuration Update catalog Use "Insert object" to add the IO device "BIS M-60x8_RT" or "BIS M-60x8_IRT" Insert both modules for inputs and outputs (e.g.: "RT 32 Byte E" and "RT 32 Byte A" for processor "BIS M-60x8_RT" or "IRT 32 Byte E" and IRT 32 Byte A" for processor "BIS M-60x8_IRT" Additional project administration steps: The name suffix "RT" or "IRT" tells you how the read and write data are exchanged.
	Note Both processors have a 2-port IRT switch and are therefore able to pass IRT data packets.
	The object properties of these modules can be used to set the start addresses of the input and output data.
	Note The input and output data can be used to control the BIS M-60_8 as described in Section 9.
Device name	 The object properties of the inserted object "m-60_8" can be used to assign the device name, the device number and the IP address.
	The processor and the host system communicate using PROFINET protocol. This means an IP address and a unique device name are required. The device name and IP address can be saved in the IO device using "Target system > Ethernet > Edit Ethernet device".

The BIS M-60_8 processor is shipped without a device name. In the included GSDML file the device name "m-60x8" is preset.

Basic Knowledge

4.1 Function principle of Identification Systems The BIS M Identification System is classified as a non-contacting system with read and write function. This makes it possible to not only transport information which is fixed programmed in the data carrier, but also to collect and pass on current information.

The main components of the BIS M Identification System are:

- Processor,
- Read/write heads,
- Data carriers.

The main areas of application are:

- In production for controlling material flow (e.g. in model-specific processes), in workpiece transport with conveying systems, for acquiring safety-relevant data,
- In warehousing for monitoring material movement,
- transporting and conveying..

4.2 Product description

Processor BIS M-6008:

- Plastic housing,
- PROFINET connections using 2 round M12 connectors, D-coded, supply voltage using M12 round connector,
- Two read/write heads can be connected,
- Read/write heads are suitable for dynamic and static operation,
- Power for the system components provided by the processor,
- Power for the data carrier provided by the read/write heads via carrier signal.

Processor BIS M-6028:

- Metal housing,
- PROFINET connections using 2 RJ45 plugs IP65 (AIDA), supply voltage via push-pull power connector (AIDA),
- Two read/write heads can be connected,
- Read/write heads are suitable for dynamic and static operation,
- Power for the system components provided by the processor,
- Power for the data carrier provided by the read/write heads via carrier signal.

Arrangement of the read/write heads:

Which arrangement of the read/write heads makes the most sense depends essentially on the possible spatial arrangement of the components. There are no functional restrictions. Distance and relative speed depend on the characteristics of the data carriers used.

If two read/write heads are connected to the BIS M-60_8 processor, both can be operated independently of each other:

One data carrier can be read at the first read/write head, while a different data carrier can be written to at the second read/write head.

Basic Knowledge

```
4.3 Control function The processor is the link between data carrier and controlling system. It manages two-way data transfer between data carrier and read/write head and provides buffer storage. The processor uses the read/write head to write data from the controlling system to the data carrier or reads the data from the carrier and makes it available to the controlling system.
```

Host systems may be the following:

A control computer (e.g. industrial PC),

– a PLC.

Double bit header for asynchronous data transmission:

If a controller does not send the data range for updating the input/output buffer synchronous, data inconsistencies may occur when sending more than 2 bytes. Consistency of the sent data can then only be ensured by sending the control bits in the first byte and again in the last bytes of the in-/output buffer. By comparing the two bit headers it can be determined whether the data are fully updated and can be accepted.

This method affects neither the PLC cycle time nor the bus access time.

Only one byte in the data buffer for the byte of the 2nd bit header is required instead of using it for data.

Basic Knowledge

4.4 Data integrity

In order to ensure data integrity, data transfer between the data carrier and processor must be monitored using a check procedure.

The factory default setting in the processor is for double reading with comparison. Alternately the CRC_16 data check can be selected.

In CRC_16 data checking a checksum is written to the data carrier which enables the data to be checked for validity at any time.

Which procedure should be used depends on how the identification system is used.

Mixed operation of both check procedures is not possible!

The following table provides an overview of the advantages of the respective check procedure.

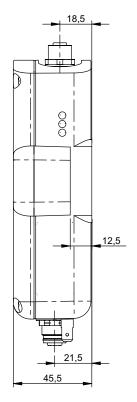
CRC_16 data check	Double reading
Data integrity even during the non-active phase (data carrier outside the read/write head zone)	No user bytes are sacrificed for storing a check code.
Shorter read time – page is read once	Shorter write time – no check code is written.

4.5 Bus connection

Processor and controlling system are connected via PROFINET.

The PROFINET IO (decentralized peripheral) is tailored to communication between a controller and decentralized field devices.

PROFINET is a combination of ProfiBus DP and Ethernet in one system, whereby the IO view of ProfiBus is retained. The device model of PROFINET IO is also oriented towards the ProfiBus technology. The characteristics of the IO devices are however described by GSD files based on XML (GSDML), and project administration/system integration is accomplished analogous to ProfiBus devices.


In a PROFIBUS network IO controllers and IO devices are connected to each other using all common network topologies: Star, line, ring or tree type topologies are possible.

The BIS M-60_8 has a built-in IRT switch with 2 ports for this purpose. This means both RT and IRT can be used.

5 Technical Data

5.1 BIS M-6008

Dimensions

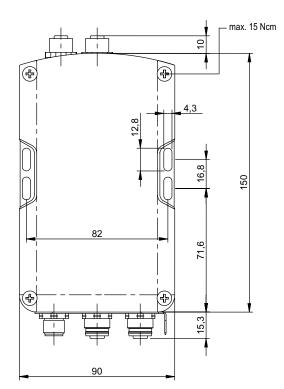


Fig. 5: Dimensions in mm

Mechanical Data

Housing material	ABS
X1 – Supply voltage	V _s 24 V DC, 5-pin male panel connector, A-coded
X2 – PROFINET Port 1	Panel socket, M12 4-pin, D-coded
X3 – PROFINET Port 2	Panel socket, M12 4-pin, D-coded
Head 1, 2 (read/write head connections)	Male panel connector, 4-pin, A-coded
Enclosure rating	IP65 (with connectors)
Weight	500 g

Electrical Data

Operating voltage VS	24 V DC ±10 %
Ripple	≤ 10 %
Current draw	≤ 400 mA
Device interface	Ethernet
Service interface	RS 232

Technical Data

Operating	
Conditions	

Ambient temperature range	0 °C+60 °C
EMC - EN 61000-4-2/3/4/5/6 - EN 55011	 Schärfegrad 3A/2A/3A/2A/3A Gr. 1, KI. A
Vibration/shock	EN 60068 Part 2-6/27/29/64/32

Function Indicators

BIS operating states	Ready CT1 Present/operating CT2 Present/operating	LED green LED green/yellow LED green/yellow
Ethernet status	Port 1 Link Port 2 Link Port 1 Activity Port 2 Activity	LED green LED green LED yellow LED yellow
PROFINET status	Status Error	LED green LED red

Note

For detailed description see "Function Indicators" on page 36.

Technical Data

5.2 BIS M-6028

Dimensions

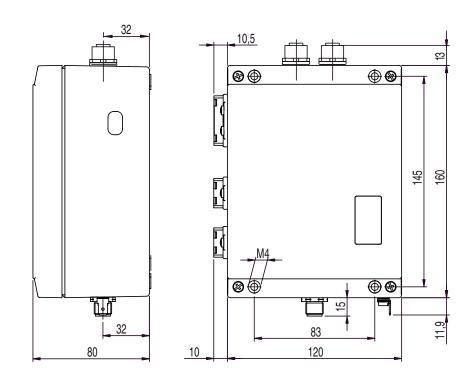


Fig. 6: Dimensions in mm

Mechanical Data

Housing material	EN AC-AISi12 (a), DIN EN 1706
X1 – Supply voltage	V _s 24 V DC, Push-Pull Power connector
X2 – PROFINET Port 1	RJ45 plug (AIDA recommendation)
X3 – PROFINET Port 2	RJ45 plug (AIDA recommendation)
Head 1, 2 (read/write head connections)	Male panel connector, 4-pin, A-coded
Enclosure rating	IP65 (with connectors)
Weight	1080 g

Electrical Data

Operating voltage VS	24 V DC ±10 %
Ripple	≤ 10 %
Current draw	≤ 400 mA
Device interface	Ethernet
Service interface	RS 232

Technical Data

Operating	
Conditions	

Ambient temperature range	0 °C+60 °C
EMC - EN 61000-4-2/3/4/5/6 - EN 55011	 Schärfegrad 3A/2A/3B/2A/XA Gr. 1, KI. A+B
Vibration/Shock	EN 60068 Part 2-6/27/29/64/32

Function Indicators

BIS operating states	Ready CT1 Present/operating CT2 Present/operating	LED green LED green/yellow LED green/yellow
Ethernet status	Port 1 Link Port 2 Link Port 1 Activity Port 2 Activity	LED green LED green LED yellow LED yellow
PROFINET status	Status Error	LED green LED red

Note

For detailed description see "Function Indicators" on page 37.

6 Installation

6.1 Processor installation

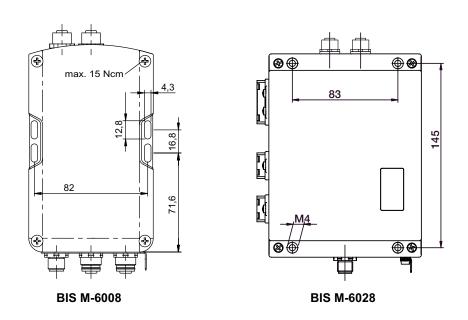


Fig. 7: Mechanical connection (dimensions in mm)

Attach processor using 4 M4 screws.

Installation examples using mounting bracket and rail holder BIS Z-HW-001 (accessory).

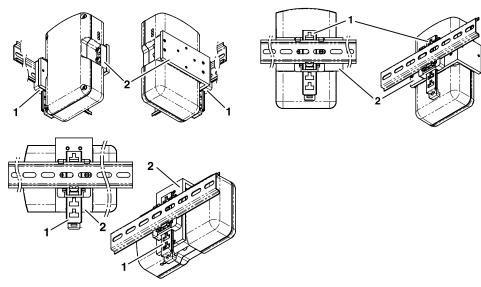


Fig. 8: Mounting using rail holder

- 1 Rail holder
- 2 Mounting brackets

Installation with support rail (accessory for BIS M-6008)

Installation 6

6.2 Interfaceinformation/ Wiring diagrams

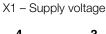
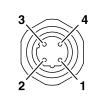
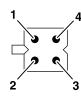

BIS M-6008

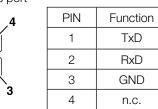
Fig. 9: BIS M-6008 connections

- 1 Head 2 Read/write head 2
- 2 Head 1 - Read/write head 1
- 3 Function ground FE


- X3 PROFINET Port 2 4
- 5 X2 - PROFINET Port 1
- 6 X1 – Supply voltage
- 7 X7 Service port

5


.3	PIN	Function
	1	+Vs
()))	2	n.c.
	3	-Vs
2	4	n.c.
	5	n.c.


X2, X3 - PROFINET

PIN	Function
1	TD+
2	RD+
3	TD-
4	RD-

X7 - Service port

Make the ground connection either directly or using an RC combination to ground. When making your connection to the Ethernet, be sure that the shield is perfectly connected to the connector body.

www.balluff.com

6 Installation

BIS M-6028

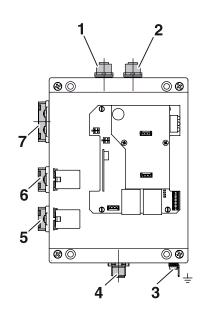


Fig. 10: BIS M-6028 connections

1 Head 2 – Read/write head 2

PIN

1

2

3

4

5

Function

+Vs

-Vs

n.c.

n.c.

n.c.

- 2 Head 1 Read/write head 1
- **3** Function ground FE

- 5 X3 PROFINET Port 2
- 6 X2 PROFINET Port 1
- 7 X1 Supply voltage

X1 – Supply voltage

X2, X3 –	PROFINET
----------	----------

1	
	F
	81

PIN	Function
1	TD+
2	TD-
3	RD+
4	n.c.
5	n.c.
6	RD-
7	n.c.
8	n.c.

X4 - Service port

Function			
n.c.			
TxD			
GND			
RxD			

Bus connection

7.1	Project administration	In project administration of fieldbus devices, a physical device is mapped as a modular system consisting of a head module and multiple data modules. The device needed for project planning are stored in GSD files (General-Station-Description) in GSDML format (General Station Description Markup Language).					
	GSD file	The GSDML file for the BIS M-60_8 is contained on the included product CD. The data modules of an IO-Link device are represented in the project planning software by slot. The GSDML file provides the possible data modules (inputs or outputs of various data width). For configuring an IO-Link device the appropriate data modules are assigned to a particular port.					
	Data modules	Input and output modules of 8 bytes, 16 bytes, 32 bytes, 64 bytes, 128 Byte and 254 bytes can be configured.					
	Integration in project planning software	 Project administration is accomplished using the project administration tool "SIMATIC NCM PC Manager" or using "STEP 7". The following steps are required for integrating a BIS M-60_8 processor: Install the GSDML file of the IO device in the hardware configuration Update catalog Use "Insert object" to add the IO device "BIS M-60x8_RT" or "BIS M-60x8_IRT" Insert both modules for inputs and outputs (e.g.: "RT 32 Byte E" and "IRT 32 Byte A" for processor "BIS M-60x8_IRT") Additional project administration steps: The name suffix "RT" or "IRT" tells you how the read and write data are exchanged 					
		Note Both processors have a 2-port IRT switch and are therefore able to pass IRT data packets.					
		The object properties of these modules can be used to set the start addresses of the input and output data.					

Note

The input and output data can be used to control the BIS M-60_8 as described in Section 9.

7.2 Device name and IP address

6. The object properties of the inserted object "m-60_8" can be used to assign the device name, the device number and the IP address

The processor and the host system communicate using PROFINET protocol. This means an IP address and a unique device name are required. The device name and IP address can be saved in the IO device using "Target system > Ethernet > Edit Ethernet device".

Note

The BIS M-60_8 processor is shipped without a device name. In the included GSDML file the device name "m-60x8" is preset.

8.1 Basic knowledge

Data carrier

The following data carriers may be used with the BIS M-60 _8 processor:

Mifare data carriers:

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type	
BIS M-1 01	Philips	Mifare Classic	752 bytes	EEPROM	

ISO15693 data carriers:

Balluff data carrier type	Manufacturer	Description	Memory capacity	Memory type	
BIS M-1 02	Fujitsu	MB89R118	2000 bytes	FRAM	
BIS M-1 03 *	Philips	SL2ICS20	112 bytes	EEPROM	
BIS M-1 04 *	Texas Instruments	TAG-IT Plus	256 bytes	EEPROM	
BIS M-1 05 *	Infineon	SRF55V02P	224 bytes	EEPROM	
BIS M-1 06 *	EM	EM4135	288 bytes	EEPROM	
BIS M-1 07 *	Infineon	SRF55V10P	992 bytes	EEPROM	

* On request

The data carriers contain additional memory ranges for configuration and protected data. These ranges cannot be processed using the BIS M-60_8 processor.

CRC check

The CRC check is a procedure for determining a check value for data in order to be able to recognize transmission errors. If the CRC check is activated, an error message is sent when a CRC error is detected.

Initializing

To use the CRC data check, the data carriers must be initialized. Initialization of the data carriers is accomplished in the output buffer using the command designator 12_{hex}. If the data carrier does not receive the correct CRC, the processor sets an error message in the input buffer (see example 10 on page 48).

Data carriers as shipped from the factory can be written immediately with a checksum, since all data are set to 0.

Error message

- If an error message is the result of a failed write job, the data carrier must be reinitialized to
 make it usable again.
- If an error message is not the result of a failed write job, the one or more memory cells in the data carrier is likely defective. The data carrier must be replaced.

Checksum

The checksum is written to the data carrier as 2 bytes of information. 2 bytes per block are sacrificed. This leaves 14 bytes per block available. The usable number of bytes can be found in the following table.

Data carrier	Balluff data carrier	Memory capacity				
	type	w/o CRC checksum	with CRC checksum			
Mifare	BIS M-1 01	752 bytes	658 bytes			
ISO 15693	BIS M-1 02	2000 bytes	1750 bytes			
	BIS M-1 03 * 112	112 bytes	98 bytes			
	BIS M-1 04 *	256 bytes	224 bytes			
	BIS M-1 05 *	224 bytes	196 bytes			
	BIS M-1 06 *	288 bytes	252 bytes			
	BIS M-1 07 *	992 bytes	868 bytes			

* On request

Simultaneous data transmission	Read The processor reads the data from the data carrier directly into the input buffer. As soon as the buffer is full, the Toggle-Bit Out (TO-Bit) is inverted to indicate data ready to the controlling system. By inverting the toggle-Bit In (TI-Bit) the controlling system indicates it is ready to receive and data read in the meantime are sent to the input buffer. This is repeated until the desired data have been read by the data carrier. After the read process is finished the processor sets the Job End-Bit (AE-Bit) and sends the remaining data to the input buffer (see example 2 on page 39).			
	Write The processor begins to write the data to the data carrier as soon as it has received the first data from the controlling system. Once all the data have been written to the data carrier, the AE-Bit is set.			
Dynamic mode	As soon as the dynamic mode function (<i>Dynamic</i>) is activated, the processor accepts the read/ write job from the controlling system and stores it, regardless of whether a data carrier is in the active zone of the read/write head or not. As soon as a data carrier enters the active zone of the read/write head, the stored job is run.			
Auto Read (Standard)	When a data carrier enters the active zone of the read/write head 14 bytes starting at address 00 _{hex} are automatically read into the input buffer. No additional read command is required. This allows small data amounts which are stored starting at address 00 _{hex} .			
	If the parameter <i>TypeSN</i> (type and serial number when CT Present) is set, then instead of the user data the data carrier type and the unique serial number of the data carrier are sent.			
Auto Read (CP-Extra)	If Auto-Read <i>CP-Extra</i> is enabled, the data are read starting at a specified start address as soon as a data carrier is recognized. These data are provided to the input buffer using the rising edge of the CP bit. The start address must be specified for each head using the command designator 07_{hex} . The start addresses may differ. The number of bytes read is determined by the selected size of the input buffer, which is divided over both heads when two heads are used.			
Type and serial number	If this function is enabled, when CT present occurs the data carrier type and serial number (UID = unique 10) for the data carrier are output. For data carrier type BIS M-101 the serial number is 4 bytes in size. For all other data carrier types the serial number is 8 bytes.			

Setting the processor parameters

8.2 Setting parameters

Parameter setting for project planning/integration is accomplished using project planning software such as "SIMATIC NCM PC Manager" or "STEP 7". Alternately the parameter setting bytes can be sent directly using the controller.

The parameters for operating the processor are stored in the GSDML file.

GSDML file

The GSDML file contains all the device parameters for the processor. The file can be found on the included BIS-CD.

Parameter overview

- CRC 16:

If this function is activated, the correctness of the read/written data is ensured by the CRC 16 data check.

- **CP Extra for read/write head 1 or 2:** If the function *CP Extra* is enabled, a start address other than 0 can be selected. The start address must first be stored on the EEPROM in the processor using the command designator 07_{hex}.
- Dynamic for read/write head 1 or 2:

If Dynamic is set, a read/write job can be sent even though there is no data carrier in the active range of the head. Now if a data carrier arrives at the head, the command is immediately executed (saves time).

– DT Type:

This parameter is used to set which data carrier types can be recognized and processed. **Simultaneous data transmission for both read/write heads:**

In simultaneous data transmission shorter read/write times can be achieved depending on the amount of data to be read or written and the type of controller.

- Buffer Head 1:

This value indicates how many bytes of the entire in- and output buffer should be used for Head 1. The remainder of the in- and output buffer is then available for Head 2.

Parameter
setting for project
planningThe project planning software (e.g. "SIMATIC NCM PC Manager" or "STEP 7") can be used to
parameterize the processor in the hardware configuration.
For this the added IO device is selected and the object properties opened by right-clicking on
"m-60_8" on Slot 0:

SIMATIC NCM PC Konfig - SIMATIC PC-Station(1)
<u>S</u> tation <u>B</u> earbeiten <u>Ei</u> nfügen <u>Z</u> ielsystem <u>A</u> nsicht E <u>x</u> tras <u>F</u> enster <u>H</u> ilfe
🗅 😅 🐂 🖷 🐘 🎒 🖿 💼 🚵 🏜 🖺 📼 🎇 🛤
SIMATIC PC-Station(1) (Konfiguration) M60x8_48_RT
Image: CP 1616 IRT Image: CP 1616 IRT IF7 PN-IO X7 Post 1 X2 Post 2 X3 Post 3 X4 Post 4 2 Image: CP 1616 IRT Image: CP 1616 IRT Image: CP 1616 IRT <

The "Parameters" tab is used to open the selection window for parameters:

Eige	enschaften - m-60x8	×
A	llgemein Adressen Parameter	
		Wert
	🖃 🔄 Parameter	
	🗄 🛅 General parameters	
	- E CRC 16	
	- Extra 1	
	– 🗐 Dynamik 1	
	- I DTTyp	0
	– ≝ TypSN	
	⊢ III CP Extra 2	
	- 🖾 Dynamik 2	
	–≝) Simultan	
	Puffer Kopf1	16

Parameter bytes

The user parameters have a data length of 6 bytes and can be set in project planning. The presetting is stored in the GSDML file.

Attention!

- Incorrect parameter setting may result in malfunction of the processor.
- ▶ The 6 bytes must be sent in full and in hexadecimal format.
- Only the indicated bytes may be changed.

	1st byte	2nd byte	3rd byte	4th byte	5th byte	6th byte	
Hex ¹⁾	00 80		00 82		00	02	
Binary	000 0000 100 00 000		0000000	10000010	<u>0</u> 00 <u>00</u> 000	00000010	
	Bit 5		Bits 18	В	it 8 Bit 5, Bit	4 Bits 18	

Bit status: 1 = activated, 0 = deactivated

1) Factory default setting

The parameter bytes may be used to activate or deactivate the following functions:

Bit	Function
1st byte, bit 5	Activate CRC_16 checksum
2nd byte, bit 5	Activate dynamic mode on read/write head 1
2nd byte, bit 4	Activate Auto Read starting at specified address after CT Present for Head 1
3rd byte, bits	Selection fore the data carrier type to be processed.
18	00 _{hex} : All data carrier types
	FEhex: Mifare (all Mifare data carriers supported by Balluff)
	FFhex: ISO 15693 (all ISO 15693 data carriers supported by Balluff)
5th byte, bit 8	Activate simultaneous data transmission for both read/write heads
5th byte, bit 5	Activate dynamic mode on read/write head 2
5th byte, bit 4	Activate Auto Read starting at specified address after CT Present for Head 2
6th byte, bits 18	Distribution of the input/output buffer over the two read/write heads. Bits 18 indicate the number of bytes used for Read/Write Head 1. The remaining bytes of the input/output buffer are assigned to Read/Write Head 2. The number must be at least 02 _{hex} , with a maximum value of FE _{hex} (254 bytes).

Notes

9.1	Function principle BIS M-60_8	system. The buffer of the cycle in which it When writing the bu	eded to exchange data and commands between the processor and the host contents is exchanged using cyclical polling. The buffer contents depends on it is written (e.g. control commands at the beginning of a job). uffer, the sent data from the preceding cycle are overwritten. Unwritten bytes d retain their data content.							
	Entire buffer			e entire buffer corresponds to which module is plugged in (RT or IRT). The two read/write heads is done using the parameter " <i>Buffer Head1</i> ".						
		Example: If an entire buffer of 16 bytes is selected and the parameter "Buffer Head1" is set to 10 bytes, then 6 bytes remain for Head 2.								
		2 bytes less per read/write head are available for data exchange, since the first and last bytes of the respective data buffer is used for control and for status messages.								oytes of
	Output buffer	The control comma are sent through the			tion syster	m and the	data to be	written t	o the dat	a carrier
		Bit-No. Subaddress	7	6	3	2	1	0		
		00 _{hex} = bit header		TI				GR		AV
		01hex		Comn	nand desi	gnator		or	Da	ata
		02hex	Start address (Low Byte) or program no. or Data							ata
		03hex	Start address (High Byte) or Data							ata
		04hex	Number of bytes (Low Byte) or Data							ata
		05hex	Number of bytes (High Byte) or Data							ata
		06hex			Data					
			Data							

Configuration and explanation (output buffer)

Last byte

Subaddress	Bit name	Meaning	Function description
00 _{hex} = bit header	TI	Toggle-Bit In	Controller is ready to receive additional data (read job).
	GR	Ground state	Identification system goes into the base state for the respective read/write head. Any pending job is canceled.
	AV	Job	A job is pending for the respective read/write head.

2nd bit header (as above)

Data

or

Output buffer (cont.)

Subaddress

Meaning

	v	•
01hex	Command designator 00hex 01hex 02hex 06hex 07hex 12hex 21hex 22hex or data	No command present. Read data carrier. Write to data carrier Store program for "Mixed Data Access" in the EEPROM. Store start address for the "Auto Read" function in the EEPROM. Initialize CRC_16 data check Read data carrier as per a program for "Mixed Data Access". Write to data carrier as per a program for "Mixed Data Access". Send the data which are being written to the data carrier.
	or program data	Send the program data which are being written to the EEPROM.

Function description

02hex	Start address (Low Byte)	Start address for reading or writing (address range from 0 to 255 is available).		
	or Start address (Low Byte)	Start address for the "Auto Read" function starting at which the data carrier is read. The value is stored in the EEPROM (address range from 0 to 255 is available).		
	or Program No.	Number of the program to be stored for "Mixed Data Access" together with command designator 06hex (value range 01hex to 0Ahex).		
	or Program No.	Number of the program to be executed for "Mixed Data Access" together with command designator 21 _{hex} or 22 _{hex} (value range 01 _{hex} to 0A _{hex}).		
	or Data	Send the data which are being written to the data carrier.		
	or program data	Send the program data which are being written to the EEPROM.		

03hex	Start address (High Byte)	Start address for reading or writing (The High Byte is also needed for the address range 256 to 1999).		
	or Start address (High Byte)	Start address for the "Auto Read" function starting at which the data carrier is read. The value is stored in the EEPROM. (The High Byte is also needed for the address range 256 to 1999).		
	or Data	Send the data which are being written to the data carrier.		
	or program data	Send the program data which are being written to the EEPROM.		

Output buffer (cont.)

Subaddress	Meaning	Function description
04 _{hex}	No. of bytes (Low Byte)	Numbers of bytes to read or write beginning with the start address. The number (1 to 2000) is formatted in hex (0001 _{hex} to 07D0 _{hex}). It is split into low and high bytes. Possible values for the low byte are therefore 1 to 255 (01 _{hex} to FF _{hex})
	or Data	Send the data which are being written to the data carrier.
	or program data	Send the program data which are being written to the EEPROM.
05hex	No. of bytes (High Byte)	Numbers of bytes to read or write beginning with the start address. The number (1 to 2000) is formatted in hex (0001 _{hex} to 07D0 _{hex}). It is split into low and high bytes. Possible values for the high byte are therefore 0 to 7 (00 _{hex} to 07 _{hex})
	or Data	Send the data which are being written to the data carrier.
	or program data	Send the program data which are being written to the EEPROM.
06hex	Data	Send the data which are being written to the data carrier.

or Send the program data EEPROM.		Send the program data which are being written to the EEPROM.	
	Data	Send the data which are being written to the data carrier.	
	or program data	Send the program data which are being written to the EEPROM.	

Last byte	2. bit header	If 1st and 2nd bit headers agree, there are valid data.

Input buffer

The input buffer is used to send the data read from the identification system, the designations and the error codes to the host system.

Bit-No. Subaddress	7	6	5	4	3	2	1	0
00 _{hex} = bit header	BB	HF	то		AF	AE	AA	СР
01hex		Error code)	C	or		Data	
02hex				Da	ata			
				Da	ata			
Last byte	2nd bit header (as above)							

Configuration and explanation (input buffer)

Subaddress	Bit name	Meaning	Function description		
00hex = bit	it BB Power		Identification system is ready.		
header	HF	Head error	Cable break read/write head or read/write head not connected		
	TO Toggle-Bit Out		Read: Additional data are being provided by the identification system.Write: Identification system can accept additional data.		
	AF	Job error	Error in processing the job or job canceled.		
	AE	Job End	Confirmation – Job finished without error		
	AA	Job Start	Confirmation – Job was recognized and begun		
	CP	Codetag Present	Data carrier in range of the read/write head		
			it the output signal "CT-Present" is available lata carrier can be processed directly as a		

Input buffer (cont.)

Subaddress	Meaning	Function description	
01hex	Error code	Error number only valid with AF bit!	
	OOhex	No error.	
	01hex	Job cannot be executed because there is no data carrier in the range of the read/write head.	
	02hex	Read error.	
	03hex	Data carrier was removed from the read/write head during reading.	
	04hex	Write error.	
	05hex	Data carrier was removed from the read/write head during writing.	
	07hex	No command designator or invalid designator for set AV-Bit or the number of bytes is 00 _{hex} .	
	09hex	Cable break read/write head or read/write head not con- nected	
	OChex	EEPROM cannot be read or written.	
	ODhex	Communication fault with data carrier.	
		Note: Check installation criteria or distance of data carrier from read/write head.	
	OEhex	CRC for the read data and CRC for the data carrier do not agree.	
	OFhex	1st and 2nd bit header are not equal The 2nd bit header must be used.	
	or data	Transmission of data which were read from the data carrier.	
02hex	Data	Transmission of data which were read from the data carrier.	
	Data	Transmission of data which were read from the data carrier.	

	Data	Transmission of data which were read from the data carrier.		
Last byte	2. bit header	If 1st and 2nd bit headers agree, there are valid data.		

Communication Communication between the controlling system and processor is defined by a sequence protocol. Communication between host system and processor is implemented using control bit in the output and input buffer. **Basic sequence** 1. Controller sends command designator in the output buffer with AV-Bit set. The AV-Bit tells the processor that a job is beginning and the sent data are valid. 2. Processor accepts the job and confirms the job by setting the AA-Bit in the input buffer. 3. If additional data need to be exchanged for the job, readiness for additional data exchange is indicated by inverting the toggle bits Bit TI and TO. 4. Processor has correctly executed the job and sets the AE-Bit in the input buffer. 5. Controller has accepted all the data. The AV-Bit in the output buffer is set. 6. Processor resets all the control bits set in the input buffer during the job (AA-Bit, AE-Bit). The processor is ready for the next job. Mixed data By running the read/write programs it is possible to write data to different address ranges in the data carrier or read data located in different address ranges on the data carrier. This function is access referred to as "Mixed Data Access". The read/write programs are stored in the processor's EEPROM. 10 programs with up to 25 instructions can be stored. Each program instruction contains the start address and number of bytes. The amount of data which can be sent is limited to 2 KB. Storing programs: The command designator 06_{hex} in the output buffer sends the program to the processor. Storing

The command designator 06_{hex} in the output buffer sends the program to the processor. Storing of a program is a job. All 25 instructions and two additional bytes with FF_{hex}FF_{hex} as a termination designator must always be sent. This means 104 bytes per program, including command designator and program number are to be sent (see example 7 on page 44).

Note

The individual program records must be attached to each other with no gaps. They must be sent in order and terminated with 2 bytes FFhex as a terminator. It is recommended that the remaining unused memory range be filled with FFhex. If an address range is selected twice, the data are also sent twice.

Example: Program **Program structure** Subaddress Value Value range structure Command designator 01hex 06hex 1st program record Program number 02hex 01hex 01hex bis 0Ahex Data record 1. Start address Low Byte 03hex Start address High Byte 04hex Number of bytes Low Byte 05hex 06hex Number of bytes High Byte 2. Data record . . . 25. Data record Start address Low Byte 03hex Start address High Byte 04hex Number of bytes Low Byte 05hex Number of bytes High Byte 06hex Termination character FFhexFFhex

Running programs:

The programs stored in the EEPROM can be used both for reading data records from the data carrier and for writing data records to a data carrier. Whether to read or write is determined by command designator 21_{hex} (read) or 22_{hex} (write) in the output buffer (see example 8 on page 45 and example 9 on page 46).

Read/write times

All specifications are typical values. Deviations are possible depending on the application and combination of read/write head and data carrier. The specifications apply to static operation, no CRC_16 data checking.

Read times:

Data carrier with 16 byte blocks*	BIS M-101	BIS M-102		
Data carrier recognition	≤ 20 ms	≤ 20 ms		
Read bytes 0 to 15	≤ 20 ms	≤ 30 ms		
for each additional start of 16 bytes	≤ 10 ms	≤ 15 ms		

Write times:

Data carrier with 16 byte blocks*	BIS M-101	BIS M-102
Data carrier recognition	≤ 20 ms	≤ 20 ms
Write bytes 0 to 15	≤ 40 ms	≤ 60 ms
for each additional start of 16 bytes	≤ 30 ms	≤ 40 ms

* Values for data carriers BIS M-1_ _-03 to BIS M-1_ _-07 on request

9.2 Function indicators The operating states of the identification system, the Ethernet/IP connection and the Ethernet connection are indicated by LEDs.

On the BIS M-6008 processor, the LEDs 4 to 9 (indicators for Ethernet and PROFINET status) are not visible when the housing is closed.

Overview **Display elements BIS M-6008**

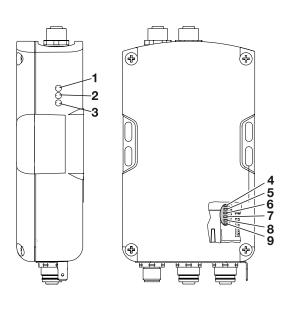


Fig. 11: Function indicators

1 Ready (green) CT1 Present/Operating (green/yellow)

2

- 4 Port 1 Link (Ethernet)
- Port 2 Activity (Ethernet) 7
- Status (PROFINET)

- 3 CT2 Present/Operating (green/yellow)
- Port 2 Link (Ethernet) 6 Port 1 Activity (Ethernet) 9
- 8 Error (PROFINET)
- Link LED Meaning off Ethernet - no connection green Ethernet - connection OK

5

Activity LED	Meaning
off	Ethernet – no activity
flashing yellow	Ethernet – RX-/TX activity

Status LED	Meaning
off	PROFINET not yet ready
green	PROFINET ready

Error LED	Meaning
off	PROFINET – connection OK
red	PROFINET – connection in Time-Out

Overview Display elements BIS M-6028 On the BIS M-6028 processor, the LEDs 4 to 9.(for the Display of ethernet and PROFINET status) are visible integrated in the housing.

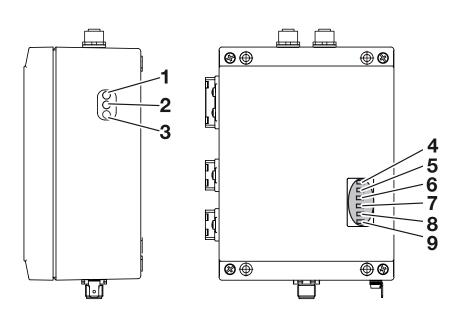


Fig. 12: Function indicators

1 Ready (green)

2

- CT1 Present/Operating (green/yellow) 5
- 3 CT2 Present/Operating (green/yellow)
- 4 Port 1 Link (Ethernet)5 Port 2 Link (Ethernet)
- 7 Port 2 Activity (Ethernet)
- 8 Status (PROFINET)
- 6 Port 1 Activity (Ethernet) 9 Error (PROFINET)

Link LED	Meaning
off	Ethernet – no connection
green	Ethernet – connection OK

Activity LED	Meaning
off	Ethernet – no activity
flashing yellow	Ethernet – RX-/TX activity

Status LED	Meaning
off	PROFINET not yet ready
green	PROFINET ready

Error LED	Meaning	
off	PROFINET – connection OK	
red	PROFINET – connection in Time-Out	

9.3 Examples

1st example Initializing the data carrier for CRC_16 data check This command is considered to be a write command. The start address and number of bytes must correspond to the maximum used data quantity.

In the example the complete memory area of a data carrier (752 bytes) is used. 658 bytes on the data carrier are available as data bytes, since 94 bytes are required for the CRC.

For configuration with 8-byte buffer size!	Com	mand from controller	BIS M-60	_8 response			
SIZE!		output buffer quence):	2. Process input b (note sequence)				
	01hex	Command designator 12 _{hex}	00hex/07hex Set A	A bit, invert TO-Bit			
	02hex	Start address 00hex					
	03hex	Start address 00hex					
	04 _{hex}	No. of bytes 92hex					
	05hex	No. of bytes 02hex					
	00hex/07hex	Set AV-Bit					
		output buffer:	4. Process output	buffer:			
	0106hex	Enter first 6 bytes		r first 6 bytes			
	00hex/07hex	Invert TI bit	Process input b	uffer:			
			00hex/07hex Invert	t TO bit			
	5. Process output buffer: 6. Process output buffer:						
	0106hex	Enter second 6 bytes	0106hex Copy	second 6 bytes			
	00hex/07hex	Invert TI bit	Process input k	ouffer:			
			00hex/07hex Invert	t TO bit			
		Continue until th	entire memory range is filled.				
	7. Process	output buffer:	8. Process output	buffer:			
	0106hex	Enter last bytes	0106hex Copy	' last bytes			
	00hex/07hex	Invert TI bit	Process input k	ouffer:			
			00hex/07hex Invert	t TO bit			
	9. Process	output buffer:	10. Process input b	uffer:			
	00hex/07hex	Reset AV bit		t AA and AE bits			
	CONSA OT NEX						

2nd example	Read and write 17 bytes starting at addr			10	
For configuration with 8-byte buffer size!	Comr	nand from controller		BI	S M-60_8 response
	1. Process (note se	output buffer quence):		2. Process (note sec	input buffer: quence):
	01hex	Command designator 01 _{hex}		00hex/07hex	Set AA bit
	02hex	Start address 0Ahex		0106hex	Enter first 6 bytes
	03hex	Start address 00hex		00hex/07hex	Set AE bit
	04hex	No. of bytes 11hex			
	05hex	No. of bytes 00hex			
	00hex/07hex	Set AV-Bit			
	3. Process 0106hex	input buffer: Copy first 6 bytes		4. Process 0106hex	input buffer: Enter second 6 bytes
	Process	output buffer:		00hex/07hex	Invert TO bit
	00hex/07hex	Invert TI bit			
	5. Process	input buffer: Copy second 6 bytes		6. Process	input buffer: Enter last 5 bytes
	Process	output buffer:		00hex/07hex	Invert TO bit
	00hex/07hex	Invert TI bit			
	7. Process	input buffer:		8. Process	input buffer:
	0105hex	Copy last 5 bytes		00hex/07hex	Reset AA and AE bits
	Process	output buffer:			
	00hex/07hex	Reset AV bit			

3rd example	Read 17 bytes starting at address 10 with simultaneous data transmission					
For configuration with 8-byte buffer size!	of Read/Write sor has finishe The reply "Job time point dep	Head 1, the data are sent to d the "Read" operation. End" (AE-Bit) is reliably set n	the inp o later amoun	but buffer. The A than before the at and the time r	d, in order to fill the input buffer E-Bit is not set until the proces- e last data have been sent. This esponse of the controller. In the act.	
	Comn	nand from controller		BIS	6 M-60_8 response	
	1. Process (note sec	output buffer juence):		2. Process i (note sec	nput buffer: uence):	
	01hex	Command designator 01 _{hex}		00hex/07hex	Set AA bit	
	02hex	Start address 0Ahex	1	0106hex	Enter first 6 bytes	
	03hex	Start address 00hex]	00hex/07hex	Invert TO bit	
	04hex	No. of bytes 11 _{hex}		00hex/07hex	Set AE bit	
	05hex	No. of bytes 00hex				
	00hex/07hex	Set AV-Bit				
	3. Process	input buffer:		4. Process i	nput buffer:	
	0106hex	Copy first 6 bytes		0106hex	Enter second 6 bytes	
	Process	output buffer:		00hex/07hex	Invert TO bit	
	00hex/07hex	Invert TI bit		00hex/07hex	Set AE bit	

		MINIMUM MINIMUM		
5. Process i	nput buffer:			nput buffer:
0106hex	Copy second 6 bytes		0105hex	Enter last 5 bytes
Process	output buffer:		00hex/07hex	Invert TO bit
00hex/07hex	Invert TI bit		00hex/07hex	Set AE bit
7. Process i	nput buffer:		8. Process in	nput buffer:
0105hex	Copy last 5 bytes		00hex/07hex	Reset AA and AE bits
Process	output buffer:	_		
00hex/07hex	Reset AV bit			

4th example

For configuration with 8-byte buffer size!		error occurs, the AF-Bit is error number. Setting the A				together with a correspon- tion and declares it as finis-
	Command from controller				BIS	60_8 response
	1. Process (note see	output buffer quence):		2.	(note seq	nput buffer: uence): occurs immediately!
	01hex	Command designator 01 _{hex}			hex/07hex	Set AA bit
	02hex	Start address 0Ahex		01	hex	Enter error number
	03hex	Start address 00hex		00	hex/07hex	Set AF bit
	04hex	No. of bytes 1Ehex				,
	05hex	No. of bytes 00hex				
	00hex/07hex	Set AV-Bit				
	3. Process	input buffer:		4.	Process i	nput buffer:
	01hex	Copy error number			hex/07hex	Reset AA and AF bits
	Process	output buffer:]			
	00hex/07hex	Reset AV bit				

Read 30 bytes starting at address 10 with read error

```
5th example
```

Read 30 bytes starting at address 10 with read error and simultaneous data transmission

For configuration with 8-byte buffer size!

Note If an error occurs, the AF-Bit is set instead of the AE-Bit, together with a corresponding error number. Setting the AF-Bit cancels the operation and declares it as finished.

Command from controller			Bl	S M-60_8 response
	output buffer quence):		(note sec If error (input buffer: quence): occurs immediately!
01hex	Command designator 01 _{hex}		00hex/07hex	Set AA bit
02hex	Start address 0Ahex		01hex	Enter error number
03hex	Start address 00hex		00hex/07hex	Set AF bit
04 _{hex}	No. of bytes 1Ehex			
05hex	No. of bytes 00hex			
00hex/07hex	Set AV-Bit			
3. Process	input buffer:		4. Process	input buffer:
01hex	Copy error number	inninni	00hex/07hex	Reset AA and AF bits
Process	output buffer:			·
00hex/07hex	Reset AV bit			

An error may also occur after data have already been sent (see example 6 on page 43).

6th example

Read 30 bytes starting at address 10 with read error and simultaneous data transmission

For configuration with 8-byte buffer size!

Note If an error occurs after sending of data has already begun, the AF-Bit is provided instead of the AE-Bit together with a corresponding error number. The error message AF is dominant. Which data are defective cannot be specified. Setting the AF-Bit cancels the operation and declares it as finished.

Command from controller			BI	S M-60_8 response
	output buffer quence):		(note sea	input buffer: quence):
01hex	Command designator 01 _{hex}		00hex/0Fhex	Set AA bit
02hex	Start address 0Ahex		0106hex	Enter first 6 bytes
03hex	Start address 00hex		00hex/07hex	Invert TO bit
04 _{hex}	No. of bytes 1Ehex			
05hex	No. of bytes 00hex			
00hex/07hex	Set AV-Bit			
	input buffer:		4. Process If an err	input buffer: Tor has occurred!
	input buffer: Copy first 6 bytes		4. Process If an err	•
3. Process 0106hex			01hex 00hex/07hex	or has occurred!
3. Process 0106hex	Copy first 6 bytes		01hex 00hex/07hex	Enter error number
3. Process 0106hex Process 00hex/07hex	Copy first 6 bytes output buffer:		01hex 00hex/07hex	Enter error number
3. Process 0106hex Process 00hex/07hex	Copy first 6 bytes output buffer: Invert TI bit		01hex 00hex/07hex	Enter error number Set AF bit
 Process 0106hex Process 00hex/07hex 5. Process 010Ehex 	Copy first 6 bytes output buffer: Invert TI bit		6. Process	input buffer:

7th example	Write 16 byt	es starting at address 20	
For configuration with 8-byte buffer size!	Con	nmand from controller	BIS M-60_8 response
5120:		output buffer quence):	2. Process input buffer: (note sequence):
	01hex	Command designator 02hex	00hex/07hex Set AA bit, invert TO-Bit
	02hex	Start address 14hex	
	03hex	Start address 00hex	
	04hex	No. of bytes 10hex	
	05hex	No. of bytes 00hex	
	00hex/07hex	Set AV-Bit	
	3. Process	output buffer:	4. Process output buffer:
	0106hex	Enter first 6 bytes	0106hex Copy first 6 bytes
	00hex/07hex	Invert TI bit	Process input buffer:
			00hex/07hex Invert TO bit
	5. Process	output buffer:	6. Process output buffer:
	0106hex	Enter second 6 bytes	0106 _{hex} Copy second 6 bytes
	00hex/07hex	Invert TI bit	Process input buffer:
			00hex/07hex Invert TO bit
	7 Drooppe		8. Process output buffer:
	7. Process	output buffer: Enter last 4 bytes	8. Process output buffer: 0104hex Copy last 4 bytes
	00hex/07hex	Invert TI bit	
	UUhex/U1 hex		Process input buffer: 00hex/07hex Set AE bit
			10. Process input buffer:
	9. Process	output buffer:	10. Process input buffer:
	00hex/07hex	Reset AV bit	00hex/07hex Reset AA and AE bits
		1	

For configuration with 8-byte buffer size!	Com	nand from controller		BI	S M-60_8 response
	1. Process output buffer (note sequence):		2.	(note sequence):	
	01hex	Command designator 07hex		Dhex/07hex	Set AA-bit and AE-bit
	02hex	Start address 48hex			
	03hex Start address 00hex				
	00hex/07hex Set AV-Bit				
	3. Process	input buffer:	 	Process	input buffer:
	00hex/07hex	Reset AV bit)hex/07hex	Reset AA and AE bits

To ensure correct data output, use the command designator 07_{hex} for each partial buffer of Head 1 and/or Head 2.

If the Auto Read function is not activated, the processor runs in standard mode and sends data starting with data carrier address 0 until the buffer is full, but to a maximum of 30 bytes.

example	Mixed data a	ccess – Save progi	ram (three	data record	ds)	
r configuration	1st data recor	d Start address	5		No. of bytes	7
h 8-byte buffer e!	2nd data reco	rd Start address	75		No. of bytes	3
	3rd data recor	d Start address	312		No. of bytes	17
	Total exchang	ed in the operation:				27 bytes
	All 104 bytes a	re written for the prog	gramming.			
	Command from controller				BIS M-60_8	response
	1. Process of (note seq	output buffer uence):		(ne	ocess input buf ote sequence):	fer:
	01hex	Command designat		00hex/C	7hex Set AA	bit, invert TO-Bit
	02hex	Program number 01	1hex			
	00hex/07hex	Set AV-Bit		INNIN		
	3. Process of	output buffer:	All Internet	4. Pr	ocess input buf	fer:
	01 _{hex}	1st start address	05hex	00hex/C		
	02hex		00hex		1	
	03hex	1st no. of bytes	07hex			
	04hex		00hex			
	05hex	2nd start address	4Bhex			
	06hex		00hex			
	00hex/07hex	Invert TI bit				
	5. Process of	output buffer:		6. Pr	ocess input buf	fer:
	01hex	2nd no. of bytes	03hex	00hex/C		
	02hex	,	00hex			
	03hex	3rd start address	38hex			
	04hex		00hex			
	05hex	3rd no. of bytes	11 _{hex}			
	06hex		00hex	8. Pr		
	00hex/07hex	Invert TI bit				
	7. Process of	output buffer:		8. Pr	ocess input buf	fer:
	01hex/02hex		FhexFFhex	00hex/C		
	03hex 04hex		FhexFFhex		1	
	05hex/06hex	(not used) F	FhexFFhex	/		
	00hex/07hex	Invert TI bit		/		

Continuation on next page

9th example (cont.)

Com	mand from cont	roller] /	BIS	M-60_8 response
). Process	output buffer:				nput buffer:
01hex/02hex	Terminator	FFhexFFhex		00hex/07hex	Set AE bit
03hex/04hex	(not used)	FFhexFFhex			
05hex/06hex	(not used)	FFhexFFhex			
00hex/07hex	Invert TI bit				
11. Process	s output buffer:			12. Process	input buffer:
00hex/07hex	Reset AV bit			00hex/07hex	Reset AA and AE bits

i Note Fill all

Fill all unused start addresses and number of bytes with FFhex!

9

10th example

Mixed data access - Read data carrier with program no. 1

For configuration with 8-byte buffer size!

00hex/07hex

Invert TI bit

Note Dynamic mode is turned off while the program is running.

A total of 27 bytes are exchanged.

Command from controller			BIS	M-60_8 response		
1. Process of (note seq	output buffer uence):		2. Process i (note seq	nput buffer: uence):		
01hex	Command designator 21 _{hex}		00hex/07hex	Set AA bit		
02hex	Start address 01hex]	0106hex	Enter first 6 bytes		
00hex/07hex	Set AV-Bit		00hex/0Fhex	Set AE bit		
3. Process input buffer: 4. Process input buffer:						
0106hex	Copy first 6 bytes		0106hex	Enter second 6 bytes		

Continued until the entire data have been read.

11. Process i	-immun		Process i	nput buffer:	
0103hex	Copy last 3 bytes			ex/0Fhex	Reset AA and AE bits
Process	Process output buffer:				
00hex/0Fhex	Reset AV bit				

÷

00hex/07hex

Invert TO bit

11th example

Mixed data access - Write to data carrier with program no. 1

For configuration with 8-byte buffer size!

Dynamic mode is turned off while the program is running.

A total of 27 bytes are exchanged.

Command from controller				В	IS M-60_8 response	
1. Process (note sec	output buffer quence):	_	2.		s input buffer: equence):	
01hex	Command designator 22 _{hex}			ex/07hex	Set AA bit, invert TO-Bit	
02hex	Program number 01hex	1				
00hex/07hex	Set AV-Bit]				
3. Process	output buffer:		4.	Process	s output buffer:	
0106hex	Enter first 6 bytes			06hex	Copy first 6 bytes	
00hex/07hex	Invert TI bit		Process input buffer:			
		-	00h	ex/07hex	Invert TO bit	
	Continued until the entire da	ta hav	ve bee	en writter	٦.	
	output buffer:		12.	Process	s output buffer:	
0103hex	Enter last bytes		00h	ex/03hex	Copy last bytes	
00hex/07hex	Invert TI bit]			s input buffer:	
				ex/07hex	Set AE bit	
13. Process	s output buffer:		14.	Proces	ss input buffer:	
00hex/07hex	Reset AV bit			ex/07hex	Reset AA and AE bits	
		1				

12th example	Generate bas	se state of Read/Write Hea	d 1					
	Both read/write heads may be placed in the base state independently of each other.							
	Controller		Identification System					
	1. Process	output buffer:		2. Go to base state. Process input buffer:				
	00hex/07hex	Set GR-Bit		00hex/07hex	Reset BB-Bit			
	3. Process	output buffer:		4. Process ir	nput buffer:			
	00hex/07hex	Reset GR-Bit		00hex/07hex	Set BB bit			
			_					

13th example Turn off Read/Write head

In normal operation both read/write heads are turned off. Setting the KA-Bit allows one or both read/write heads to be turned off.

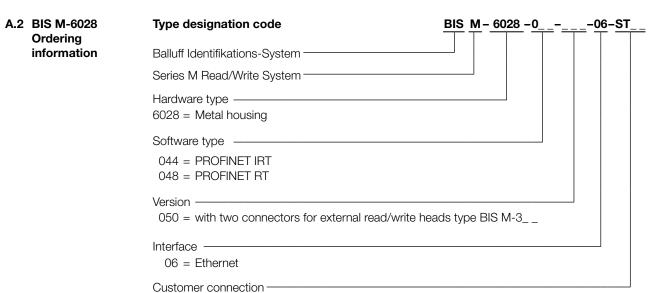
Controller

1. Process output buffer:

00hex/07hex	Set KA-Bit
-------------	------------

Resetting the KA-Bit turns the read/write head on again.

Notes


Appendix

A.1 BIS M-6008	Type designation code	<u>BIS M-6008-0</u> -	-06- ST
Ordering information	Balluff Identification System		
	Series M Read/Write System		
	Hardware type 6008 = Plastic housing		
	Software type 044 = PROFINET IRT 048 = PROFINET RT		
	Version	/rite heads type BIS M-3	
	Interface		
	Customer connec- tion ST23 = Connector types X1 = Round connector for supply voltag X2 = Round connector for Ethernet (4-p		

X3 = Round connector for Ethernet (4-pole female, D-coded) X3 = Round connector for Ethernet (4-pole female, D-coded)

Accessories	Туре	Ordering code		
(optional, not included)	Connector	for X1 for X2, X3	BKS-S 79-00 BKS-S 182-00	
	Cover cap	for Head 1, Head 2 for X2, X3	Cover cap, M12 female (121 671) BKS 12-CS-00	
	Adapter cable, M12 D-coded per RJ45		BIS M-526-PVC-00,5	
	Mounting brackets (mounting kit)	For attaching the processor to rails	BIS Z-HW-001	

Appendix

ST22 = Connector types

- X1 = Round connector for supply voltage (5-pin male, AIDA recommendation) X2 = Ethernet connector (8-pole female, AIDA recommendation)
- X3 = Ethernet connector (8-pole female, AIDA recommendation)
- X4 = Round connector for RS232 interface (4-pin male)

Accessories (optional, not	Туре	Ordering code		
included)	Cover cap	for Head 1, Head 2, X4 for X2, X3	Cover cap, M12 female (121 671) on request	
	Female	X1	5-pole female, Push-Pull Power	
	Male	X2, X3	8-pin male, Push-Pull RJ-45	

Appendix

ASCII table

Decimal	Hex	Control Code	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	Ctrl @	NUL	43	2B	+	86	56	V
1	01	Ctrl A	SOH	44	2C	,	87	57	W
2	02	Ctrl B	STX	45	2D	-	88	58	Х
3	03	Ctrl C	ETX	46	2E		89	59	Y
4	04	Ctrl D	EOT	47	2F	/	90	5 A	Z
5	05	Ctrl E	ENQ	48	30	0	91	5B	[
6	06	Ctrl F	ACK	49	31	1	92	5C	١
7	07	Ctrl G	BEL	50	32	2	93	5D	[
8	08	Ctrl H	BS	51	33	3	94	5E	^
9	09	Ctrl I	HT	52	34	4	95	5F	_
10	0 A	Ctrl J	LF	53	35	5	96	60	`
11	0B	Ctrl K	VT	54	36	6	97	61	А
12	0C	Ctrl L	FF	55	37	7	98	62	В
13	0D	Ctrl M	CR	56	38	8	99	63	С
14	0E	Ctrl N	SO	57	39	9	100	64	d
15	0F	Ctrl O	SI	58	3 A	:	101	65	е
16	10	Ctrl P	DLE	59	3B	;	102	66	f
17	11	Ctrl Q	DC1	60	3C	<	103	67	g
18	12	Ctrl R	DC2	61	3D	=	104	68	h
19	13	Ctrl S	DC3	62	ЗE	>	105	69	i
20	14	Ctrl T	DC4	63	ЗF	?	106	6 A	j
21	15	Ctrl U	NAK	64	40	@	107	6B	k
22	16	Ctrl V	SYN	65	41	А	108	6C	L
23	17	Ctrl W	ETB	66	42	В	109	6D	m
24	18	Ctrl X	CAN	67	43	С	110	6E	n
25	19	Ctrl Y	EM	68	44	D	111	6F	0
26	1 A	Ctrl Z	SUB	69	45	E	112	70	р
27	1B	Ctrl [ESC	70	46	F	113	71	q
28	1C	Ctrl \	FS	71	47	G	114	72	r
29	1D	Ctrl]	GS	72	48	Н	115	73	S
30	1E	Ctrl ^	RS	73	49	I	116	74	t
31	1F	Ctrl _	US	74	4 A	J	117	75	u
32	20		SP	75	4B	К	118	76	V
33	21		!	76	4C	L	119	77	W
34	22		"	77	4D	М	120	78	Х
35	23		#	78	4E	Ν	121	79	Y
36	24		\$	79	4F	0	122	7 A	Z
37	25		%	80	50	Р	123	7B	{
38	26		&	81	51	Q	124	7C	
39	27		٢	82	52	R	125	7D	}
40	28		(83	53	S	126	7E	~
41	29)	84	54	Т	127	7F	DEL
42	2 A		*	85	55	U			

Index

Α

Accessories 52, 53 ASCII table 54 Auto Read 23

В

Bus connection 13

С

Communication Basic sequence 33 Connection diagrams 19 BIS M-6008 19 BIS M-6028 20 Control bit Codetag Present 31 Ground state 28 Head error 31 Job 28, 33 Job End 31, 33 Job Start 31, 33 Toggle-Bit In 28, 33 Toggle-Bit Out 31, 33 Control function 12 CRC check 22 Checksum 23 Error message 22 Initializing 22

D

Data integrity 13 Check procedure 13 CRC_16 data check 13 Double reading 13 Data modules 21 Device name 10 Dimensions 14, 16 Display elements BIS M-6028 37 Dynamic mode 23

Ε

Electrical Data 14, 16 Entire buffer 28

F

Functional principle 11, 28 Function Indicators 15, 17 **G**

GSD file 21

I

Input buffer 31 Bit header 31 Error code 32 Installation Connections 19 Integration 21 GSD file, header module, data modules 21 Intended use 6 IP address 21

Μ

Mechanical Data 14, 16 Mixed data access 33 Running programs 34 Storing programs 33

0

Operating Conditions 15, 17 Output buffer 28 Bit header 28 Command designator 29 Mixed data access 29

Ρ

Processor Communication 33 Entire buffer 28 Functional principle 28 Input buffer 31 Output buffer 28 Parameter setting 24 Product description 11 PROFINET 13 PROFINET 13 PROFINET IO 13 Project administration 10 Project planning software 21

R

Read times 35 Read/write head Generate base state 50 Read/Write head Turn-off 50 **S** Safety 6

Installation 6 Operation 6

Startup 6 Simultaneous data transmission 23 **T**

Technical Data Dimensions 14, 16 Electrical Data 14, 16 Function Indicators 15, 17 Mechanical Data 14, 16 Operating Conditions 15, 17 Type designation code BIS M-6008 52 BIS M-6028 53

W

Warning notes Meaning 6 Write Times 35

Balluff GmbH Schurwaldstraße 9 73765 Neuhausen a.d.F. Germany Tel. +49 7158 173-0 Fax +49 7158 5010 balluff@balluff.com ■ www.balluff.com