

Technical Description, Operating Manual

www.balluff.com

1	User Instructions	4
	1.1 About this Manual	4
	1.2 Typographical Conventions	4
	1.3 Symbols	4
	1.4 Abbreviations	5
2	Safety	6
	2.1 Intended use	6
	2.2 General Safety Notes	6
	2.3 Meaning of Warning Notes	6
3	Basic Knowledge	7
	3.1 Function Principle of Identification Systems	7
	3.2 Product description	7
	3.3 Control function	8
	3.4 Data integrity	8
	3.5 PROFINET	8
	3.6 Communication Mode	8
4	Assembly	9
	4.1 Processor Unit Scope of Delivery	9
	4.2 Compact processor installation	9
	4.3 Electrical connection	10
	4.4 Dimensions	11
5	Technical Data	11
6	Commissioning	12
	6.1 Configuration	13
	6.2 Parameter configuration	13
	6.3 Integration into Project Planning Software	14
	6.4 Function principle of the BIS M-4008	17
	6.5 Process Data Buffer	17
7	Device function	17
	7.1 Function indicator	28
	7.2 Examples	29
	7.3 Webserver	36
	Appendix	42
	Index	
	Index	44

User Instructions

1.1	About this Manual	This manual describes the compact processor of the identification system BIS M-4008 as well as its startup for immediate use		
1.2	Typographical Conventions	The following conventions are used in this manual:		
	Enumerations	Enumerations are shown as a list with an en-dash. – Entry 1, – Entry 2.		
	Actions	 Action instructions are indicated by a preceding triangle. The result of an action is indicated by an arrow. ► Action instruction 1. ⇒ Action result. ► Action instruction 2. 		
	Syntax	 Numbers: Decimal numbers are shown without additional indicators (e.g. 123), hexadecimal numbers are shown with the additional indicator hex (e.g. 00_{hex}). 		
		Parameters: Parameters are shown in italics (e.g. CRC_16).		
		Directory paths: References to paths where data is stored or to be saved are shown in small caps (e.g. PROJECT:\DATA TYPES\USER-DEFINED).		
		Control characters: Control characters for sending are set in angle brackets (e.g. <ack>).</ack>		
		ASCII code: Characters transmitted in ASCII code are set in apostrophes (e.g. 'L').		
1.3	Symbols	A Caution! This symbol indicates a security notice which must be observed.		
		Note, tip This symbol indicates general notes.		

User Instructions

1.4	Abbreviations	BIS CP CRC DCP DID DP I/O port EEPROM EMC FCC FE GSD GSDML HTML IP I/O IRT LF CR LSB MAC MSB n. c. PC PLC PROFINET RT PLC Tag TCP UID UDP UBL	Balluff Identification System Code Present Cyclic Redundancy Check Discovery and basic Configuration Protocol Device ID Decentralized peripherals Digital input and output port Electrical Erasable and Programmable ROM Electromagnetic compatibility Federal Communications Commission Function ground General Station Description GSD Markup Language Hypertext Markup Language Internet Protocol Port Digital Input and Output Isynchronous Real Time Line Feed with Carriage Return Least Significant Byte Media Access Control Most Significant Byte not connected Personal Computer Programmable Logic Controller Process Field Network Real Time Programmable Logic Controller Data carrier Transmission Control Protocol Unique Identifier User Datagram Protocol Unique Resource Locator
		URL VID	Uniform Resource Locator Vendor ID

Safety

2.1	Intended use	The BIS M-4008 compact processor is a component of the BIDS M identification system.
		Within this system it is used for linking to a higher level computer (PLC, PC). It may be used
		only for this purpose in an industrial environment corresponding to Class A of the EMC Law.
		This description applies to compact processor units of the following series:

- BIS M-4008-048-001-ST4
- BIS M-4008-048-002-ST4

2.2 General Safety Installation and Startup Notes Installation and startup are to be performed by trained technical personnel only. Any damage resulting from unauthorized manipulation or improper use voids warranty and liability claims against the manufacturer.

When connecting the processor unit to an external controller, observe proper selection and polarity of the connection as well as the power supply (see "Assembly" on page 9). The processor unit may only be used with an approved power supply (see "Technical Data" on page 11).

Caution!

This is a Class A device. This device may cause RF disturbances in residential areas; in such a case the operator may be required to take appropriate countermeasures.

Conformity

CE

This product was developed and manufactured in accordance with the applicable European directives. CE conformity has been verified.

All approvals and certifications are no longer valid if:

- Components are used that are not part of the identification system BIS M,
- Components are used that have not been explicitly approved by Balluff.

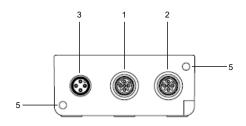
Operation and testing

The operator is responsible for ensuring that local safety regulations are observed. In the event of defects and non-correctable faults in the identification system, take the system out of service and secure it to prevent unauthorized use.

2.3 Meaning of Warning Notes

A

The pictogram used with the word "Caution" warns of a situation that could harm someone's health or damage equipment. Failure to observe these warning notes may result in injury or damage to equipment.


► Always observe the described measures for preventing this danger.

Basic Knowledge

3.1 Function Principle of Identification Systems The BIS V Identification System is classified as a non-contacting system with read and write function. This allows it to convey information programmed permanently in the data carrier, but also to collect and pass on current information.

The main components of the BIS M identification system are:

- Compact processor,
- Data carrier.

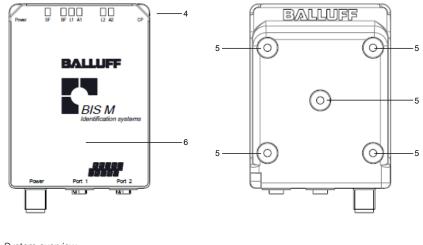


Figure 1: System overview

- 1 PROFINET Port 1
- 2 PROFINET Port 2
- 3 Power IN

- 4 Status LEDs5 Mounting hole
- 6 Sensing surface

The main areas of application are:

- In production for controlling material flow (e.g. for model-specific processes, conveying systems that transport workpieces, acquisition of safety-related data),
- transporting and conveying.

3.2 Product description

- Compact processor BIS M-4008:
- Metal housing
- Round connector terminations
- Power for the data carrier provided by the compact processor via carrier signal
- 2 × PROFINET IO port
- Control displays
- Webserver for diagnostics and service functions

7

Basic Knowledge

3.3	Control function	The compact processor unit is the link between data carrier and host system. It manages two- way data transfer between data carrier and compact processor and provides buffer storage. The compact processor unit writes data from the controlling system to the data carrier or reads the data from the data carrier and makes it available to the controlling system. Controlling systems may be the following: - A PLC.
		Double bit string: In order to ensure complete transmission of all data in the data buffer, the control bits in the data buffer's first and last byte (bit header) are transmitted and compared. If both bit headers are the same, then the data is updated completely and can be taken over. This means that the data for each R/W head is only valid if both bit headers are the same. Thus, the host system also has to compare the bits in the bit strings.
3.4	Data integrity	In order to increase data integrity, data transfer between the data carrier and compact processor as well as the storage device can be monitored using a check procedure. A CRC_16 data check can be enabled for this via parameter configuration. With the CRC_16 data check, a check code that allows the validity to be checked at any time is written to the data carrier.
		 A CRC_16 data check provides the following advantages: Data integrity even during the non-active phase (data carrier outside the R/W head). Shorter read time – page is read once.
3.5	PROFINET	Open bus system for process and field communication in cell networks with few nodes and for data communication in accordance with IEC 61158/EN 50173. Automation devices, such as PLCs, PCs, operating and observation devices, sensors or actuators, can communicate using this bus system. PROFINET IO is used in the BIS M-4008.
3.6	Communication Mode	Process data (cyclical): The GSDML file provides combined input/output modules (8 bytes254 bytes) to map the sensor image: - Combined input/output modules (8 bytes254 bytes)
		Service data (diagnostics, parameters): – Parallel and non-reactive to process data

Assembly

4.1 Processor Unit Scope of Delivery

- Included in the scope of delivery:
- BIS M-4008
- Security notice
- 1 × closure cap
- Grounding set

Visit www.balluff.com for more information on available software and accessories.

4.2 Compact processor installation

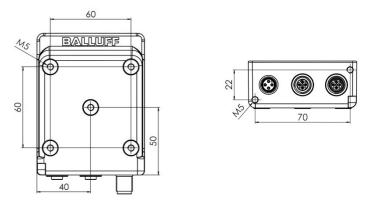


Figure 2: Mechanical connection (dimensions in mm)

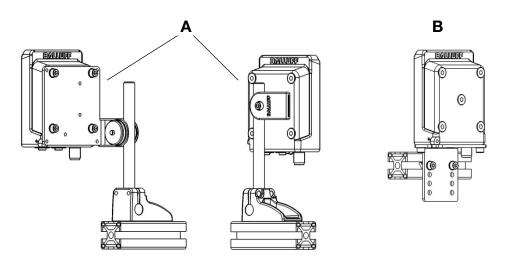


Figure 3: Mounting examples (A: Using Balluff Mounting System, B: Using mounting bracket on T-slot profile)

- ► Select a suitable installation position.
- Secure the processor unit using 4 or 2 M5 screws (strength category 8.8, lightly oiled, tightening torque M = 5.5 Nm).

Installation

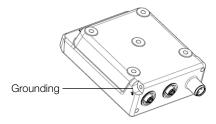


Figure 4: Grounding

The function ground connection from the housing to the machine must have lowimpedance and is made using the supplied ground strap.

4.3 Electrical connection

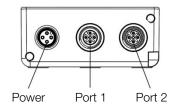
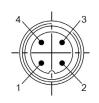



Figure 5: Electrical connection

Power

Male insert, 4-pin, A-coded



F	PIN	Function
1 +24		+24 V DC
		n.c.
		0 V
	4	n.c.

PROFINET IO port 1/2 Female M12, 4-pin, D-coded

PIN	Function
1	+Tx
2	+Rx
3	–Tx
4	–Rx

5 Technical Data

5.1 Dimensions

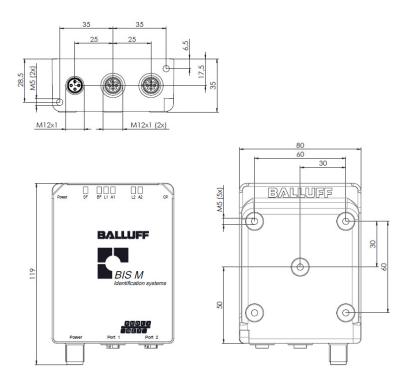


Figure 6: Dimensions in mm

Mechanical data	Housing material	Zinc die-cast housing	
	Power	4-pin M12 plug, A-coded	
	PROFINET IO port 1	Female M12, 4-pin, D-coded	
	PROFINET IO port 2	Female M12, 4-pin, D-coded	
	Degree of protection	IP67 (with connectors)	
	Weight	BIS M-4008-048-001-S4 = 410g BIS M-4008-048-002-S4 = 490g	
Electrical data			
	Supply voltage V _s	24 V DC ±20% LPS Class 2	
	Residual ripple	<u>≤ 10%</u>	
	Current consumption	150 mA	
	Application interfaces	PROFINET IO	
Operating			
conditions	Ambient temperature	0 °C+70 °C	
	Storage temperature	–20 °C+85 °C	
	EMC		
	– EN 61000-4-2/4/5/6	- Severity level 2A/1A/1A/2A	
	– EN 61000-4-3 (80-1000 MHz)	 Severity level 2A 	
	- EN 61000-4-3 (1000-2000 MHz)	- Severity level 3A	
	– EN 61000-4-3 (2000-2700 MHz)	 Severity level 2A 	
	– EN 301489-1/-3	– EN 55022 (CI.A)	
	Vibration/shock	EN 60068 Part 2-6/27/32	

6 Commissioning

PROFINET IO	 The BIS M-4008 processor unit and the controlling system communicate via PROFINET IO. The system PROFINET IO consists of the following components: IO controller IO device (here, the BIS M-4008 processor unit) In a PROFINET network, IO controllers and IO devices can be connected to each other using all common network topologies: a radial, linear, ring or tree topology is possible.
	Note The BIS M-4008 has a built-in IRT switch with 2 ports for this purpose. This means that both RT and IRT can be used.
Device master data	In order to configure the parameters for the IO controller correctly based on type, the device master data for the BIS M-4008 compact processor unit are included in the form of a GSD file. These data can be found on the BALLUFF Web page or on the device Web server.
Input/output buffer	The data exchange takes place with the host system in the input and output buffer. The size of these buffers must be configured by the master.
	Note The possible buffer sizes are stored in the GSDML file. A minimum size of 8 and a maximum size of 254 bytes can be configured; the value must always be an even number.
Device name and IP address	The compact processor unit and the host system communicate via the PROFINET protocol. This means an IP address and a unique device name are required. The device name and the IP address can be edited using the respective project planning software used, e.g. "Simatic Manager" and the IO device.
	Note The BIS M-4008 processor unit is shipped without a device name. The GSDML file has the prepared device name "bism4008".

Startup

- **6.1 Configuration** When project planning a PROFINET device it is represented as a modular system which consists of a header module "BIS M-4008" and a data module.
 - **GSDML file** The device data required for project planning is stored in GSDML files (General Station Description). Appropriate data modules are assigned to a specific slot for configuring the BIS M-4008.

The "BIS M-4008" header module always has to be plugged in at slot 0.

Slot Module		Function
0	Header module BIS M-4008	no process data
1	Read/write head	Parameter configuration and process data

6.2 Parameter configuration

RFID port parameter

Slot 1, Subslot 1

Index	Byte	Bit	Length	Contents	Values	Default
1	0	0	1 bits	CRC	0/1	0
	0	1	1 bits	Dynamic mode	0/1	0
	0	2	1 bits	Type serial number	0/1	0
	0	3	1 bits	Slow tag detection	0/1	0

Description of individual parameters

CRC check

The CRC check is a procedure for determining a check value for data in order to be able to recognize transmission errors. If the CRC check is activated, an error message is sent when a CRC error is detected.

Checksum

The checksum is written to the data carrier as 2 bytes of information. 2 bytes per block are lost. This leaves 14 bytes per block available. The usable number of bytes can be found in the following table.

The number of usable bytes thus decreases when using the checksum.

Startup

Balluff data carrier type	Memory capacity	Usable bytes for CRC_16
BIS M-1 02	2000 bytes	1750 bytes
BIS M-1 03	112 bytes	98 bytes
BIS M-1 04	256 bytes	224 bytes
BIS M-1 05	224 bytes	196 bytes
BIS M-106	288 bytes	252 bytes
BIS M-1 07	992 bytes	868 bytes
BIS M-1 08	160 bytes	140 bytes
BIS M-1 09	32 bytes	28 bytes
BIS M-1 11	8192 bytes	7168 bytes
BIS M-1 13	32786 bytes	28672 bytes
BIS M-1 14	65536 bytes	57344 bytes
BIS M-1 15	131072 bytes	114688 bytes
BIS M-117	208 bytes	182 bytes
BIS M-120	8192 bytes	7168 bytes

Dynamic mode As soon as the (*Dynamic mode*) function is enabled, the compact processor unit accepts the read/write job from the controlling system and stores it, regardless of whether a data carrier is in the active zone of the R/W head or not. If a data carrier enters the active range of the R/W head, the stored job is run.

Type serial
numberIf this function is enabled, the type of the read/write head as well as the data carrier type and
serial number (UID = Unique Identifier) for the data carrier are output when CP occurs.

Slow tag For this option, the antenna on the read/write head is switched on for data carrier detection only every 200 ms. The parameters for this function are configured in the respective read/write head module.

- 6.3 Integration into Project Planning Software
 The connection of a BIS V-4008 to a Siemens S7 controller is shown using "SIMATIC Manager". The exact procedure depends on the project planning software used.
 - Installing the GSD file
- Open a new project.Open hardware configurator.
- Open hardware configurator.
 Select the "Tools | Install new GSD" menu command.
- ⇒ An "Install new GSD file" dialog will appear.

Select directory and GSD file.

 \Rightarrow The [Install] button only becomes active if a GSD file is selected.

To perform project planning on the PC, the GSD file for the module must be installed:

- Click on [Install].
- \Rightarrow The GSD file is installed.
- \Rightarrow A message appears once the process has finished.

Startup

- ► Confirm the message and close the window.
- Select the menu command "Tools | Update catalog".
 - \Rightarrow The devices are displayed in the product tree.

HW Konfig (NCM PC) - SIMATIC PC-Station(1)		- * •
ation Bearbeiten Einfügen Ziebystem Ansicht Extras Ferster Hilfe		
) 📽 💱 🖷 🖄 🐵 🛝 🖻 🇰 🏛 👜 🖽 🖽 🖼 🐶		
A SIMATIC PC Station(1) (Konfiguration) Ballutt BDV 6108		a).
and service no station(1) (noninguistion) - Barun Bisk oteo	Sycherc	nte
B to Lot	le: ₩ PROFIEUS-DP → ₩ PROFIEUS-PA 는 ₩ PROFIEUS-PA	
	E 🙅 PROFINET IO	
2	© ■ Galancey © ■ Follow © ■ Follow	
3		
4	Call Network Components	
6	8 🧰 Schaltgeniko 9 🖮 Sensors	
7	Weleve FELDGERATE	
	🛞 🔛 Ident Systems	
	B Salut PriD	
	 Read IFPD	
	 	
	- PRD Head (0) 15 bite	
	RRD Head I/O 16 byte RRD Head I/O 254 byte	
	- RRD Head I/O 32 byte	
	RRD Head U/0 54 byte RRD Head U/0 Sbyte	
	+ 1 815 M 60x8 RT	
	 a sto u-store a sto s v 6108 	
	1 . SIMATIC PC Station	
SIMATIC PC-Station(1)		
Steckplatz Bezeichnung		
0 PC		
	PROFIBUS-DP-Slaves: der SIMATIC 57, M7 und C7 (dezentraler Author)	
	PERCENT OF SAME OF SERVICE OF AN ALL OF PROPERTIES AND ALL AND A	
isan Sia (1) um Hilfa tu adultan		

Figure 7: Parameter configuration with a GSDML file

Adding a DP slave

The devices are located in the hardware catalog under "Other field devices", "Ident systems", "Balluff", "RFID". The module is added as PROFINET IO.

- ► Select the PROFINET rail.
- ► Double-clicking adds the device as a PROFINET IO. ⇒ The slots are assigned the default settings.

HW Konfig (NCM PC) - SIMATIC PC-Station(3) Station Bearbeiten Einfügen Ziehystern Ansicht Extras Ferster Hilfe				1 4 💌
By SIMATIC PC Station(1) (Konfiguration) Balluff BDV 6108		(a si
9 (4) PC 1 (7) (4) (7) (4) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	and 1 100001 10 July 100 3 100 9	-	States	
			R	
×				
TI 8554408				
0 5 815M4000 815 M-4000	rste A-Adresse Diagnoseadres //6/7/6*	se Konmentar		
3/1 FRAD 3/1 E1H1 port 1 M12	163/5" 163/4"			
20 E1H2 0 0012 M12	163/3"			
			Babut Grobh RPED How I/0 254 Julya GSDML-V22 RF 4 subs ¹⁶ 4556-4006-048 20151000 and	٩
P				

Figure 8: Adding the BIS M-4008 as a slave

Startup

	08	
llgemein		
Kurzbezeichnung:	BISM4008	
	Balluff RFID Ident Systems for industrial ethemet; PROFINET IO-Device	
Bestell-Nr. / Firmware:	BIS_M-4008 / V1 x	
Familie:	Balluff RFID	
Gerätename:	BISM4008	
GSD-Datei:	GSDML-V2.31-Balluff-BISM-4008-048-20151030.xml	
- Tailashmar PROFINE	Ausgabestand ändern	
- Teilnehmer PROFINE Gerätenummer:		
Gerätenummer:		
Gerätenummer: IP-Adresse:	T IO-System	
Gerätenummer: IP-Adresse:	T IO-System	
	Ausgabestand ändern	

Figure 9: Determining the station name

Allgemein Parameter		
IP-Adresse: 192.168.0.7 Subnetzmaske: 255.255.255.0 Subnetz:	Netzübergang C Keinen Router ve C Router verwender Adresse:	
nicht vemetzt		Neu
Ethemet(1)		Eigenschaften

Figure 10: Changing the IP address

Changing the device's IP address

Determining the station name

7.1 Function principle of the BIS M-4008
 Two buffers are needed to exchange data and commands between the processor unit and the controlling system (input buffer and output buffer). The buffer contents are exchanged using cyclical polling. The buffer content depends on the cycle in which it is written (e.g. control commands at the beginning of a job).

When writing to the buffer, the transmitted data from the preceding cycle is overwritten. Unwritten bytes are not deleted and retain their data content.

7.2 Process Data Buffer

Output buffer

The control commands are carried over to the identification system and those on the data carrier are carried over to written data through the output buffer.

Bit-No.	7	6	5	4	3	2	1	0
Subaddress								
00 _{hex} = bit string		TI	KA			GR		AV
01 _{hex}		Com	imand ider	ntifier		or	Da	ata
02 _{hex}	Start	Start address (Low Byte) or program No.			n No.	or	Da	ata
03 _{hex}	Start address (high byte) or Dat				ata			
04 _{hex}	Number of bytes (low byte) or Data				ata			
05 _{hex}	Number of bytes (high byte) or Da				ata			
06 _{hex}	Data							
	Data							
Last byte = bit string		TI	KA			GR		AV

Assignment and explanation

Subaddress	Bit name	Meaning	Function description
00 _{hex} /last byte	TI	Toggle bit in	Controller is ready to receive additional data (read job).
	KA	Head shutoff	Shuts off the R/W head's antenna. Tag detection no longer takes place. CP and MT are 0.
	GR	Basic state	Cancels the current job for this R/W head and puts the channel into a basic state. The R/W head can then be used again once GR = 0 and the controller has acknowledged this with BB = 1. CP and MT are 0.
	AV	Job	A job is present.

Note

After a R/W error the GR bit does not need to be set in order to place the R/W in the basic state. Each time a command (successful or with error) is carried out, the R/W head is in the basic state.

Command structure

7

Command designator 00_{hex} : No command present

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
00 _{hex}	Command identifier	00 _{hex} : No command present.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command designator 01_{hex} : Read from data carrier

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	01 _{hex} : Read from data carrier.
02 _{hex}	Start address (low byte)	Start address for reading.
03 _{hex}	Start address (high byte)	Start address for reading.
04 _{hex}	Number of bytes (low byte)	Number of bytes to be read starting from the start address.
05 _{hex}	Number of bytes (high byte)	Number of bytes to be read starting from the start address.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command designator 02_{hex} : Write to data carrier

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	02 _{hex} : Write to data carrier.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (high byte)	Start address to be written from.
04 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
05 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command structure

Data is accepted from the compact processor unit only after the command has been accepted by the processor unit and acknowledged.

00 _{hex}	1st bit string	
01 _{hex}	Data	Transmission of the data that is to be written to the data carrier.
	Data	Transmission of the data that is to be written to the data carrier.
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command designator $\mathbf{07}_{\text{hex}}\!$: Store the start address for the "Auto Read" function

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	07 _{hex} : Store the start address for the "Auto Read" function in EEPROM.
02 _{hex}	Start address (low byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.
03 _{hex}	Start address (high byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command designator $\mathrm{09}_{\mathrm{hex}}$: Type and serial number

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	09 _{hex} : Read the read/write head type, data carrier type and UID (unique identifier) of a data carrier in the field (for data format, see page 14).
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command structure

7

Command designator 12_{hex} : Initialize CRC_16 data check

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	12 _{hex} : Initialize data carrier.
02 _{hex}	Start address (low byte)	Start address from which the CRC_16 data check is to be carried out.
03 _{hex}	Start address (high byte)	Start address from which the CRC_16 data check is to be carried out.
04 _{hex}	Number of bytes (low byte)	Start address from which the CRC_16 data check is to be carried out.
05 _{hex}	Number of bytes (high byte)	Start address from which the CRC_16 data check is to be carried out.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command designator $\mathbf{32}_{hex}\!:$ Write constant value to data carrier

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	32 _{hex} : Write a data carrier with a constant value.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (high byte)	Start address to be written from.
04 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
05 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Data is accepted from the compact processor unit only after the command has been accepted by the processor unit and acknowledged.

00 _{hex}	1st bit string	
01 _{hex}	Data	Value that is to be written to the data carrier.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command structure

Command designator 81_{hex}: Read data carrier with 24-bit address assignment

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	81 _{hex} : Read from data carrier.
02 _{hex}	Start address (low byte)	Start address for reading.
03 _{hex}	Start address (middle byte)	Start address for reading.
04 _{hex}	Start address (high byte)	Start address for reading.
05 _{hex}	Number of bytes (low byte)	Number of bytes to be read starting from the start address.
06 _{hex}	Number of bytes (middle byte)	Number of bytes to be read starting from the start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes to be read starting from the start address.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command designator $\mathbf{82}_{\mathrm{hex}}$: Write data carrier with 24-bit address assignment

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	82 _{hex} : Write to data carriers.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (middle byte)	Start address to be written from.
04 _{hex}	Start address (high byte)	Start address to be written from.
05 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
06 _{hex}	Number of bytes (middle byte)	Number of bytes to be written starting from the start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command structure

7

Command designator $\rm 87_{hex}$: Saving the start address for the Auto Read function with 24-bit address assignment

Subaddress	Meaning	Function description	
00 _{hex}	1st bit string		
01 _{hex}	Command identifier	87 _{hex} : Store the start address for the "Auto Read" function in EEPROM.	
02 _{hex}	Start address (low byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.	
03 _{hex}	Start address (middle byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.	
04 _{hex}	Start address (high byte)	Address for the "Auto Read" function starting from which the data carrier is read. The value is stored in the EEPROM.	
	None	No meaning	
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.	

Command designator $92_{\mbox{\scriptsize hex}}$: Initialize CRC_16 data check with 24-bit address assignment

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	92 _{hex} : Initialize CRC_16 data check.
02 _{hex}	Start address (low byte)	Start address from which the CRC_16 data check is to be carried out.
03 _{hex}	Start address (middle byte)	Start address from which the CRC_16 data check is to be carried out.
04 _{hex}	Start address (high byte)	Start address from which the CRC_16 data check is to be carried out.
05 _{hex}	Number of bytes (low byte)	Number of bytes for which the CRC_16 data check is to be carried out starting from the start address.
06 _{hex}	Number of bytes (middle byte)	Number of bytes for which the CRC_16 data check is to be carried out starting from the start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes for which the CRC_16 data check is to be carried out starting from the start address.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Command structure

Command designator $\mathrm{B2}_{\mathrm{hex}}$: Write constant value to data carrier with 24-bit address assignment

Subaddress	Meaning	Function description
00 _{hex}	1st bit string	
01 _{hex}	Command identifier	B2 _{hex} : Write constant value to data carrier with 24-bit address assignment.
02 _{hex}	Start address (low byte)	Start address to be written from.
03 _{hex}	Start address (middle byte)	Start address to be written from.
04 _{hex}	Start address (high byte)	Start address to be written from.
05 _{hex}	Number of bytes (low byte)	Number of bytes to be written starting from the start address.
06 _{hex}	Number of bytes (middle byte)	Number of bytes to be written starting from the start address.
07 _{hex}	Number of bytes (high byte)	Number of bytes to be written starting from the start address.
	None	No meaning
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.

Input buffer

7

The input buffer is used to send the data read from the identification system, the designations and the status codes to the host system.

Bit-No. Subaddress	7	6	5	4	3	2	1	0
00 _{hex} = bit string	BB	HF	TO	MT	AF	AE	AA	CP
01 _{hex}	Status code or Dat			Data				
02 _{hex}		Data						
				Da	ata			
Last byte = bit string	BB	HF	ТО	MT	AF	AE	AA	CP

Assignment and explanation

Subaddress	Bit name	Meaning	Function description
00 _{hex} /last byte	BB	Ready	After powering up or after a reset via the GR bit, the BB bit indicates that the corresponding channel is ready.
	HF	Head error	Cable break to the R/W head.
	то	Toggle bit out	Read: Additional data is being provided by the identification system. Write operation: Identification system can accept additional data.
	MT	Multiple Tag	More than 1 data carrier is in the R/W head's field.
	AF	Job error	A job was processed incorrectly or was canceled.
	AE	Job end	A job was completed without errors.
	AA	Job start	A job was detected and started.
	CP	Code Present	A data carrier has been detected.

Structure of the input buffer

The structure of the process data buffer is identical for all commands.

Subaddress	Meaning Function description				
00 _{hex}	1st bit string				
01 _{hex}	Status code	Provides information on the status of a query.			
02 _{hex}	Data	Transmission of data that was read from the data carrier.			
	Data	Transmission of data that was read from the data carrier.			
Last byte	2nd bit string	Valid data is present if the 1st and 2nd bit strings match.			

Status codes

i Note

Status codes are only valid in connection with the AF bit!

Status code	Function description
00 _{hex}	Everything OK
01 _{hex}	Job cannot be run because there is no data carrier in range of the read/write head.
02 _{hex}	Cannot read the data carrier.
04 _{hex}	Cannot write to the data carrier.
05 _{hex}	Data carrier was removed from the R/W head's range during writing.
07 _{hex}	No or invalid command designator with set AV bit or the number of bytes is 00_{hex} .
09 _{hex}	R/W head cable break or no R/W head connected.
0D _{hex}	Communication to the R/W head disrupted.
0E _{hex}	CRC for the read data and CRC for the data carrier do not agree.
0F _{hex}	1st and 2nd bit string are unequal. The 2nd bit string must be used.
20 _{hex}	Address assignment of the read/write job is outside the memory range of the data carrier.
21 _{hex}	This function is not possible for this data carrier.

Description of the Code Present (CP) and Multiple Tag (MT) bits

СР	МТ	Meaning
0	0	No tag in the field
1	0	Exactly one tag in the field. Automatic reading is OK (if configured).
0	1	More than one data carrier is in the field. They cannot be processed.
1	1	Does not occur.

Communication

The communication between the controlling system and processor unit is defined by a sequence protocol. Communication between controlling system and processor unit is implemented using a control bit in the output and input buffer.

Basic sequence

1. The controller sends a command designator to the processor unit in the output buffer with the AV bit set.

The AV bit tells the compact processor unit that a job is beginning and the transmitted data is valid.

- 2. The compact processor unit accepts the job and confirms the job by setting the AA bit in the input buffer.
- 3. If additional data needs to be exchanged for the job, readiness for additional data exchange is indicated by inverting the TI and TO toggle bits.
- 4. The compact processor unit has correctly executed the job and sets the AE bit in the input buffer.
- 5. The controller has accepted all data. The AV bit in the output buffer is reset.
- 6. The compact processor unit resets all control bits set in the input buffer during the job (AA bit, AE bit). The processor unit is ready for the next job.

Note

All specifications are typical values. Deviations are possible depending on the application and combination of R/W head and data carrier. The specifications apply to static operation; no CRC_16 data checking.

Read/write times

ISO 15693:

Read times Data carrier with 16 bytes per block				
Data carrier detection	~ 20 ms			
Read bytes 0 to 15	~ 25 ms			
For each additional 16-byte block started	~ 10 ms			

Write times Data carrier with 16 bytes per block						
	FRAM (BIS M-102/20)	EEPROM (BIS M-103/07/08)				
Data carrier detection	~ 20 ms	~ 20 ms				
Write bytes 0 to 15	~ 60 ms	~ 80 ms				
For each additional 16-byte block started	~ 25 ms	~ 80 ms				

High speed*:

Read times Data carrier with 64 bytes per block				
Data carrier detection	~ 20 ms			
Read bytes 0 to 63	~ 14 ms			
For each additional 64-byte block started	~ 6 ms			

Write times Data carrier with 64 bytes per block				
Data carrier detection	~ 20 ms			
Write bytes 0 to 63	~ 30 ms			
For each additional 64-byte block started	~ 15 ms			

*These times apply only to data carriers BIS M-1__-**11**/A, BIS M-1__-**13**/A, BIS M-1__-**14**/A and BIS M-1__-**15**/A.

Distance between the data carriers

Data carrier	Distance BIS M					
	106 107 108 110 111 115 128	112 134 135	140 142 143 144	150 151 152 154 155 156	153	191
BIS M-4008001	> 20 cm	> 20 cm	> 20 cm			
BIS M-4008002				> 25 cm	> 30 cm	> 25 cm

Distance between the compact processor units

i

Compact processor,	Minimum distance
BIS M-4008001	20 cm
BIS M-4008002	20 cm

When installing two BIS M-4_ _-... on metal, there is normally no mutual interference. Unfavorable use of a metal frame can result in problems when reading a data carrier. In this case, the read distance is reduced to 80% of the maximum value. In critical applications, a pre-test is recommended.

Device Functions

7.3 Function indicator

The operating states of the identification system and the PROFINET interface are indicated by LEDs.

Overview of display elements Power SF BF L1 A1 L2 A2 CP

Figure 11: Function indicators

LED	Status	Function				
	Off	Device is not ready for operation				
POWER	Green	Supply voltage OK				
	Green, flashing	Cable break				
	Off	No data carrier detected				
CP	Yellow	Data carrier detected				
	yellow flashing	Data carrier is being processed				
	Off	No error				
SF	Red	Diagnostics message; system error				
	Red, flashing	DCP activated via bus				
	Off	No error				
BF	Red	No connection or no configuration				
	Red, flashing	No data exchange				
L1/L2	Off	No connection				
	Green	Connection				
A1 / A2	Off	No data transfer				
	Green	Data transfer				

7.4 Examples

1. Read 30 bytes at read/write head, start address 10

Once enough data has been read to fill the input buffer of R/W head1, the data will be carried over to the input buffer.

The AE bit is not set until the compact processor unit has finished the "Read" operation. The reply "Job end" (AE bit) is reliably set no later than before the last data has been sent. This time point depends on the requested volume of data and the time response of the controller. In the example, the use of italics for "Set AE bit" calls your attention to this fact.

Controller

1. Process output buffer (note sequence):			2. Process input buffer (note sequence):			
01 _{hex}	Command designator 01 _{hex}		00 _{he}	/0F _{hex}	Set AA bit	
02 _{hex}	Start address 0A _{hex}		01	.0E _{hex}	Enter first 14 bytes	
03 _{hex}	Start address 00 _{hex}		00 _{he}	/0F _{hex}	Invert TO bit	
04 _{hex}	No. of bytes 1E _{hex}		00 _{he}	x/0F _{hex}	Set AE bit	
05 _{hex}	No. of bytes 00 _{hex}	, in the second s				
00 _{hex} /0F _{hex}	Set AV bit					
3. Process	input buffer:		4.	Process ir	nput buffer:	
010E _{hex}	Copy first 14 bytes	, innnnnn		.0E _{hex}	Enter second 14 bytes	
	output buffer:	1		/0F _{hex}	Invert TO bit	
00 _{hex} /0F _{hex}	Invert TI bit		00 _{bc}	x/0F _{hex}	Set AE bit	
5. Process	input buffer:		6.	Process ir	nput buffer:	
010E _{hex}	Copy second 14 bytes		01	.02 _{hex}	Enter last bytes	
	output buffer:	1		/0F _{hex}	Invert TO bit	
00 _{hex} /0F _{hex}	Invert TI bit]		/0F _{hex}	Set AE bit	
	input buffer:				nput buffer:	
0102 _{hex}	Copy last bytes			/0F _{hex}	Reset AA and AE bits	
	output buffer:	J	Loohe	ex' Or hex		
00 _{hex} /0F _{hex}	Reset AV bit	1				
bohex of hex		J				

2. Read 30 bytes at read/write head, start address 10, problem with reading

Note

If a problem occurs, the AF bit is set with the corresponding status number instead of the AE bit. Setting the AF bit cancels the job and declares it as finished.

Controller

- 1. Process output buffer (note sequence):
- 2. Process input buffer (note sequence):

If proble	,	immediately!

01 _{hex}	Command designator 01 _{hex}		00 _{hex} /0F _{hex}	Set AA bit
02 _{hex}	Start address 0A _{hex}		01 _{hex}	Enter status number
03 _{hex}	Start address 00 _{hex}		00 _{hex} /0F _{hex}	Set AF bit
04 _{hex}	No. of bytes 1E _{hex}			
05 _{hex}	No. of bytes 00 _{hex}			
00 _{hex} /0F _{hex}	Set AV bit			
3. Process i	nput buffer:		4. Process ir	nput buffer:
01 _{hex}	Copy status number		00 _{hex} /0F _{hex}	Reset AA and AF bits
Process	output buffer:	_		
00 _{hex} /0F _{hex}	Reset AV bit			

3. Read 30 bytes at read/write head, start address 10, problem with reading

Note If a problem occurs after transmission of the data has started, the AF bit is provided instead of the AE bit together with a corresponding status number. The AF status message is dominant. Which data is incorrect cannot be specified. Setting the AF bit cancels the job and declares it as finished.

Controller

1. Process of (note seq	output buffer uence):		2.	Process ir (note sequ	nput buffer uence):
01 _{hex}	Command designator 01 _{hex}	munun	00 _{he}	x/0F _{hex}	Set AA bit
02 _{hex}	Start address 0A _{hex}		01	.0E _{hex}	Enter first 14 bytes
03 _{hex}	Start address 00 _{hex}		00 _{he}	x/0F _{hex}	Invert TO bit
04 _{hex}	No. of bytes 1E _{hex}				
05 _{hex}	No. of bytes 00 _{hex}				
00 _{hex} /0F _{hex}	Set AV bit				
			ſ	If a probl	nput buffer: em has occurred!
010E _{hex}	Copy first 14 bytes		01 _{he}		Enter status number
	output buffer:] 4	00 _{he}	/0F _{hex}	Set AF bit
00 _{hex} /0F _{hex}	Invert TI bit				
5. Process input buffer:			6.	Process ir	nput buffer:
010E _{hex}	Copy status number			x/0F _{hex}	Reset AA and AF bits
Process of	output buffer:	-			
00 _{hex} /0F _{hex}	Reset AV bit]			

4. Write 30 bytes at read/write head, start address 20

Controller

1. Process (note sec	output buffer quence):	 2.	Process i (note seq	nput buffer uence):
01 _{hex}	Command designator 02 _{hex}		_{ex} /0F _{hex}	Set AA bit, invert TO bit
02 _{hex}	Start address 14 _{hex}			
03 _{hex}	Start address 00 _{hex}			
04 _{hex}	No. of bytes 1E _{hex}			
05 _{hex}	No. of bytes 00 _{hex}			
00 _{hex} /0F _{hex}	Set AV bit			
3. Process	output buffer:	4.	Process	output buffer:
010E _{hex}	Enter first 14 bytes	<u></u>	0E _{hex}	Copy first 14 bytes
00 _{hex} /0F _{hex}	Invert TI bit	01.		nput buffer:
00hex/01 hex		00	ex/0F _{hex}	Invert TO bit
5. Process	output buffer:	 6.	Process	putput buffer:
010E _{hex}	Enter second 14 bytes	01.	0E _{hex}	Copy second 14 bytes
00 _{hex} /0F _{hex}	Invert TI bit		Process i	nput buffer:
		00 _h	_{ex} /0F _{hex}	Invert TO bit
				output buffer:
0102 _{hex}	Enter last 2 bytes	01.	02 _{hex}	Copy last 2 bytes
00 _{hex} /0F _{hex}	Invert TI bit			nput buffer:
			_{ex} /0F _{hex}	Set AE bit
		 *	_	
	output buffer:			nput buffer:
00 _{hex} /0F _{hex}	Reset AV bit	00 _h	_{ex} /0F _{hex}	Reset AA and AE bits

5. Writing a constant value to a data carrier

A data carrier is to be written with 1000 bytes (constant value) starting from start address 80.

Controller

1. Process of (note seq	output buffer uence):		2.	Process ir (note sequ	nput buffer uence):
01 _{hex}	Command designator 32 _{hex}			/0F _{hex}	Set AA bit, invert TO bit
02 _{hex}	Start address 50 _{hex}]			
03 _{hex}	Start address 00 _{hex}				
04 _{hex}	Number of bytes E8 _{hex}				
05 _{hex}	No. of bytes 03 _{hex}				
00 _{hex} /0F _{hex}	Set AV bit				
3. Process of	output buffer:		4.	Process c	output buffer:
01	Enter constant value		01		Copy constant value
00 _{hex} /0F _{hex}	Invert TI bit]		Process ir	nput buffer:
		-	00 _{he}	/0F _{hex}	Set AE bit
5. Process of	output buffer:		6.	Process ir	nput buffer:
00 _{hex} /0F _{hex}	Reset AV bit	juunun		/0F _{hex}	Reset AA and AE bits

6. Initializing a data carrier for CRC

The sequence for CRC initialization is similar to a write command. The start address and number of bytes must correspond to the maximum volume of data used. In the example the complete memory area of a data carrier (752 bytes) is used. 658 bytes on the data carrier are available as data bytes, since 94 bytes are required for the CRC.

Controller Identification system 2. 1. Process output buffer Process input buffer (note sequence): (note sequence): 01_{hex} Command designator 12_{hex} Set AA bit, invert TO bit $00_{hex}/0F_{hex}$ Start address 00_{hex} 02_{hex} Start address 00_{hex} 03_{hex} No. of bytes 92_{hex} 04_{hex} 05_{hex} No. of bytes 02_{hex} 00_{hex}/0F_{hex} Set AV bit З. Process output buffer: 4. Process output buffer: Enter first 14 bytes 01...0E_{hex} 01...0E_{hex} Copy first 14 bytes 00_{hex}/0F_{hex} Invert TI bit Process input buffer: 00_{hex}/0F_{hex} Invert TO bit 5. Process output buffer: 6. Process output buffer: 01...0E_{hex} 01...0E_{hex} Enter second 14 bytes Copy second 14 bytes $00_{\text{hex}}/0F_{\text{hex}}$ Invert TI bit Process input buffer: 00_{hex}/0F_{hex} Invert TO bit 95. Process output buffer: 96. Process output buffer: 01...08_{hex} Enter last bytes 01...08_{hex} Copy last bytes Invert TI bit 00_{hex}/0F_{hex} Process input buffer: 00_{hex}/0F_{hex} Set AE bit 97. Process output buffer: 98. Process input buffer: $00_{\text{hex}}/0F_{\text{hex}}$ Reset AV bit $00_{\text{hex}}/0F_{\text{hex}}$ Reset AA and AE bits

7. Set read-write unit to base state or turn off read-write unit

The read/write head of the identification system can be set to the base state or turned off.

Controller

Identification system

1. Process	output buffer:	 2.	Go to bas Process ir	e state. nput buffer:
00 _{hex} /0F _{hex}	Set GR bit		_{ex} /0F _{hex}	Reset BB bit
			⇒ R/Wh	nead is shut off
3. Process	output buffer:	4.	Process ir	nput buffer:
00 _{hex} /0F _{hex}	Reset GR bit	00 _h	_{ex} /0F _{hex}	Set BB bit

 \Rightarrow R/W head is switched on

8. Switching off a read/write head antenna

In normal operation the read/write head antenna is turned on. Setting the KA bit turns the antenna off.

Controller

1. Process of	butput buffer:	
00 _{hex} /0F _{hex}	Set KA bit	

The antennas are switched back on by resetting the KA bit.

7.5	Webserver	he BIS M-4008 includes an integrated webserver for retrieving detailed information on the urrent status. This can also be used to reset the device settings (Factory Reset). For connection setup with the webserver, enter the IP address of the module in the address ne of the browser. Please use Internet Explorer 10 or higher.
	Navigation	o go to the various pages of the webserver. A navigation bar is shown in the upper area of the vebserver. Clicking on the various icons takes you to the corresponding pages.
		Show Module and Port Status
		RFID diagnosis
		User Login for advanced operations
		Configure the Fieldbus Module
		Logging and Diagnosis
		i Display this help window
		igure 12: Webserver navigation bar

Note

The highlighted logo text shows the user which page he is on. In addition the logo text is positioned slightly below the other logo texts.

Home

Information on the configuration and network activity of the module can be found on this page. The status of the device can be determined from the image of the device. Here the current LED status is shown. The "Get GSDML" button allows you to download the needed GSDML file from the device for project planning.

Figure 13: Webserver homepage

LED Legend

Click on the "LED_Legend" link to see an explanation of the device status. Here a smaller box is shown in which the status of the individual LEDs is explained.

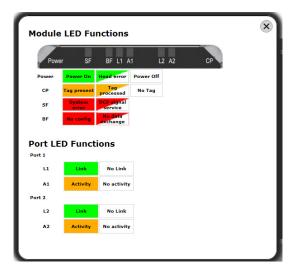


Figure 14: Webserver LED legend

RFID

7

This page shows information about the current process data and the parameter settings. These are the parameters set for the RFID unit during project planning. Use the checkbox to turn display of the process data exchange on and off. If there is no process data exchange with a master currently taking place, "No Data transfer with PLC" is shown.

BALLUFF		BIS M-4008	A Home	RFID	Login	Ö Config	E	i Info
BIS-M Device Properties								
Identification Data								
Vendor Name:	BALLUFF GmbH							
Product Name:	BIS M-4008							
Head Type:	M Head							
Energy Safe Mode (Slow Tag Search):	Off							
CRC:	Off							
Dynamic Mode:	Off							
Head State	No Tag							
Serial Number Tag								
Show process data	\checkmark							
Process Data								
Inputs (hex):	No data transfer with PLC							
Outputs (hex):	No data transfer with PLC							

Figure 15: Webserver RFID page

Note

The process data display is refreshed every second. The displayed process data may therefore differ from the actual process data for the controller. Furthermore, the system is slowed down since the process data are obtained from the firmware. This function should therefore only be used for diagnostics purposes or for startup.

Configurations The module description and module position of the BIS M-4008 can be edited on this page. The device settings can also be reset (Factory Reset). This function can only be used after entering a username and password. The user is therefore automatically taken to the user login page:

Username: Balluff Password: BISMPNT

BALLUFF	BIS M-4008	Home	RFID	Logout	Config	E	<i>i</i> Info
Module Configuration							
Name:							
Location:							
Contact:							
Balluff GmbH							
Save Configuration							
Reboot Factory Reset							

Figure 16: Webserver module configuration

Configurations

BALLUFF	BIS M-4008	h Home	RFID	Login	Config	E	i Info
User Login	Is required for Configuration operati Fieldbus Master or the IO-Link Devic						

Figure 17: Webserver user login

Log

This page can be used by service or by the customer for performing diagnostics on the unit. The diagnostics messages are summarized in a list. Shown for the errors are severity, origin, time stamp and error description. Some diagnostics messages are also stored in a file in flash memory. This file can be exported to the connected PC using the "Export Web Log" button. The "Clear Log" button clears the temporary Web log entries. This function has no effect on the entries stored in the file and can only be performed after a user login. The "Set Module Time" button sends the current browser time to the device. The "Update Log" button updates the page and the associated entries.

BA	LLUFF			BIS M-4008	A Home	RFID	Login	Config	E Log	i Info
Info	rmation									
Produ	uct name:	BIS M-4008	Browser time:	: 2015-11-10 09:33:19.343						
Firmv	vare revision:	1.0	System Uptim	ne: 3 mins 21 secs 665 msecs						
MAC	address:	00:19:31:20:02:E6	Free flash spa	ace: 11276 KB						
Log				Clear Log Export Web Log	Set	t Module	Time	Up	odate Lo	bg
Log No.	Severity	Date▲	Origin	Clear Log Export Web Log		t Module	e Time	Up	odate Lo	g
-	Severity Notice	Date▲ 2000-01-01 00:00:00.426	-			t Module	e Time	Up	odate Lo	g
No.			SYS	Mes		t Module	e Time	Up	odate Lo	bg
No.	Notice	2000-01-01 00:00:00.426	SYS WEB_IF	Mess System startup BIS M-4008 (FW V1.0)	age					g
No. 1 2	Notice Notice	2000-01-01 00:00:00.426 2015-11-10 09:30:06.486	SYS WEB_IF SYS	Mess System startup BIS M-4008 (FW V1.0) Set module time on weblog	age					og

Figure 18: Webserver log page

If a more precise time stamp is needed for the diagnostics, when restarting the device the time must be sent to the device using the "Set Module Time" button. This time indication is based on the "browser" time. Sending takes several seconds, so that a slight time offset results. If no time is sent to the device, the time is incremented starting at 2000 -01 -01......

Logout

If the expanded functions are no longer needed for the webserver, the user can log out again using the "Logout" icon.

Figure 19: Webserver logout

Info

Contact information and the navigation elements are explained on this page.

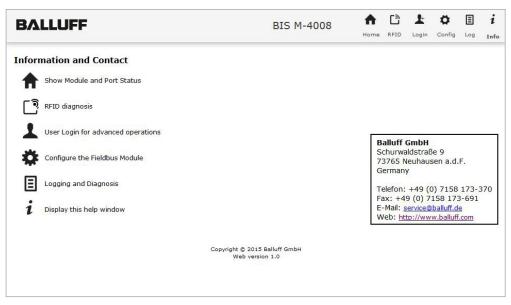


Figure 20: Webserver information and contact

Appendix

Type code	$\underline{BIS} M - 4008 - 048 - 00x - S$
	Balluff Identification System
	Series M
	System component
	Generation (design/material) 0 = Generation 1, metal
	Interface
	Software type 048 = PROFINET IO
	Antenna type 001 = Round antenna 002 = Ferrite antenna
	Connection system
	ST4 = Power supply: 4-pin male connector with M12 external thread, A-coded PROFINET input: 4-pin male connector with M12 internal thread, D-coded PROFINET output: 4-pin female connector with M12 internal thread, D-coded
Accessories (optional, not included in the scope of delivery	Note Other accessories for the BIS M-4008 can be found in the Balluff catalog and at www.balluff.com.

Appendix

ASCII table

Decimal	Hex	Control code	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	Ctrl @	NUL	43	2B	+	86	56	V
1	01	Ctrl A	SOH	44	2C	,	87	57	W
2	02	Ctrl B	STX	45	2D	-	88	58	Х
3	03	Ctrl C	ETX	46	2E	•	89	59	Y
4	04	Ctrl D	EOT	47	2F	/	90	5 A	Z
5	05	Ctrl E	ENQ	48	30	0	91	5B	[
6	06	Ctrl F	ACK	49	31	1	92	5C	\
7	07	Ctrl G	BEL	50	32	2	93	5D	[
8	08	Ctrl H	BS	51	33	3	94	5E	^
9	09	Ctrl I	HT	52	34	4	95	5F	_
10	0 A	Ctrl J	LF	53	35	5	96	60	`
11	0B	Ctrl K	VT	54	36	6	97	61	а
12	0C	Ctrl L	FF	55	37	7	98	62	b
13	0D	Ctrl M	CR	56	38	8	99	63	С
14	0E	Ctrl N	SO	57	39	9	100	64	d
15	0F	Ctrl O	SI	58	3 A	:	101	65	е
16	10	Ctrl P	DLE	59	3B	;	102	66	f
17	11	Ctrl Q	DC1	60	3C	<	103	67	g
18	12	Ctrl R	DC2	61	3D	=	104	68	h
19	13	Ctrl S	DC3	62	3E	>	105	69	i
20	14	Ctrl T	DC4	63	ЗF	?	106	6 A	j
21	15	Ctrl U	NAK	64	40	@	107	6B	k
22	16	Ctrl V	SYN	65	41	A	108	6C	L
23	17	Ctrl W	ETB	66	42	В	109	6D	m
24	18	Ctrl X	CAN	67	43	С	110	6E	n
25	19	Ctrl Y	EM	68	44	D	111	6F	0
26	1 A	Ctrl Z	SUB	69	45	E	112	70	р
27	1B	Ctrl [ESC	70	46	F	113	71	q
28	1C	Ctrl \	FS	71	47	G	114	72	r
29	1D	Ctrl]	GS	72	48	Н	115	73	S
30	1E	Ctrl ^	RS	73	49		116	74	t
31	1F	Ctrl _	US	74	4 A	J	117	75	u
32	20		SP	75	4B	K	118	76	V
33	21		!	76	4C	L	119	77	W
34	22		"	77	4D	M	120	78	x
35	23		#	78	4E	N	121	79	у
36	24		\$	79	4F	0	122	7 A	Z
37	25		%	80	50	P	123	7B	{
38	26		&	81	51	Q	124	7C	
39	27		4	82	52	R	125	7D	}
40	28		(83	53	S	126	7E	~
41	29)	84	54	T	127	7F	DEL
42	2 A		*	85	55	U			

Index

Α

Accessories 42 ASCII table 43 В

Bus connection 8

С

Checksum 13 Communication Basic sequence 26 Control bit Basic state 17 Code Present 24 Head error 24 Job 17,26 Job end 24, 26 Job error 24 Job start 24, 26 Toggle bit in 17, 26 Toggle bit out 24, 26 Control function 8 CRC check 13

D

Data Integrity 8 Dimensions 11 Display elements 28 Double bit string 8 Dynamic mode 14

Е

Electrical connection 10 Electrical data 11

F

Function principle 7, 9, 17

L

Input buffer 24 Bit string 24 Intended use 6 IP address 12 AnyBus IPconfig 12 DHCP 12

Μ

Mechanical data 11

0

Operating conditions 11 Output buffer 17 Bit string 17

Ρ

Processor unit Communication 26 Display elements 28 Function principle 17 Input buffer 24 Output buffer 17 Product description 7, 8, 9

R

Read times 27 Read/write head Generate base state 35 turn-off 35

S

Safety 6 Commissioning 6 Installation 6 Operation 6

т

Technical Data Dimensions 11 Electrical data 11 Mechanical data 11 Operating conditions 11 Type code 42 Type, serial number 14 W

Warning notes Meaning 6

Balluff GmbH Schurwaldstraße 9 73765 Neuhausen a.d.F. Germany Phone +49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de www.balluff.com