

BIS L-6026 EtherNet/IP

Technical Description, User's Manual

english

www.balluff.com

1	User Notes	4
	1.1 About this Manual	4
	1.2 Manual layout	4
	1.3 Conventions	4
	1.4 Symbols	4
	1.5 Abbreviations	5
2	Safety	6
	2.1 Intended use	6
	2.2 General notes on device safety	6
	2.3 Meaning of the warning notes	6
3	Getting Started	7
4	Basic Knowledge	10
	4.1 Identification system principles of operation	10
	4.2 Product description	10
	4.3 Control function	10
	4.4 Data integrity	10
	4.5 Bus connection	11
5	Technical Data	12
6	Installation	14
	6.1 Processor installation	14
	6.2 Interface information/Connection diagrams	14
	6.3 Changing the EEPROM	15
7	Bus Connection	16
	7.1 IP address	16
	7.2 AnyBus IPconfig	16
8	Parameterizing the Processor	18
	8.1 Basic knowledge	18
	8.2 Parameterizing	20
9	Device Function	26
	9.1 Function principle BIS L-6026	26
	9.2 Function indicators	33
	9.3 Examples	35
	Appendix	46

User Notes

1.1	About this Manual	This manual describes the processor for the BIS L-6026 identification system and guides you through startup for immediate operation.		
1.2	Manual layout	The manual is designed so that each section builds on the previous sections. chapter 2: Basic information regarding safety. chapter 3: The main steps in installing the identification system. chapter 4: An introduction into the material. chapter 5: Technical data for the processor. chapter 6: Mechanical and electrical connections. chapter 7: Logging the processor on to the network. chapter 8: User-defined settings for the processor. chapter 9: How the processor and host system work.		
1.3	Conventions	The following conventions are used in this manual.		
	Enumerations	Enumerations are represented as a list with bullet points. – Entry 1, – Entry 2.		
	Actions	 Action instructions are indicated by a preceding triangle. The result of an action is indicated by an arrow. ► Action instruction 1. ⇒ Result of action. ► Action instruction 2. 		
	Notation	 Numbers: Decimal numbers are represented without additional description (e.g. 123), hexadecimal numbers are represented by appending the abbreviation hex (e.g. 00hex). Parameters: Decimal numbers in italian is italian in a gray (ODO 10)		
		Parameters are written in italics, e.g. <i>(CRC_16)</i> . Directory paths: Paths in which data are or will be saved/stored are represented in small caps (e.g. PROJECT:\DATA TYPES\USERDEFINED).		
	Cross-references	Cross-references indicate where additional information on the topic can be found (see "Technical Data" starting page 12).		
1.4	Symbols	Attention! This symbol indicates a safety advisory which must be observed.		
		Note, tip This symbol indicates general notes.		

User Notes

BISBalluff Identification SystemCIPCommon Industrial ProtocolCRCCyclic Redundancy CodeDHCPDynamic Host Configuration ProtocolEDSElectronic Data SheetEEPROMElectrical Erasable and Programmable RedEMVElectromagnetic CompatibilityMAC-IDMedia Access Control IdentifierODVAOpen DeviceNet Vendor AssociationPCPersonal ComputerRPIRequested Packed IntervalPLCProgrammable Logic Controller	OM
--	----

BIS L-6026 EtherNet/IP Processor

2 Safety

2.1	Intended use	The BIS L-6026 processor is a component of the BIS L identification system. Within the identi- fication system it is used for linking to a host computer (PLC, PC). It is intended only for use only in this way and in an industrial environment complying with Class A of the EMC Law. This description applies to processors in series BIS L-6026-034
2.2	General notes on device safety	Installation and startup Installation and startup are to be carried out only by trained specialists. The manufacturer revokes the right to any warranty or liability claims resulting from unauthorized modifications or improper use. When connecting the processor to an external controller, be sure to observe proper polarity for all connections including the power supply (see section "Installation" on page 14). The processor must be operated only using approved power supplies (see section "Technical Data" on page 12).
		Operation and testing It is the responsibility of the operator to ensure that the locally applicable safety regulations are maintained. In case of defects and faults in the identification system which cannot be remedied, take it out of operation and predect against unauthorized use.
2.3	Meaning of the warning notes	Attention! The pictogram used with the word "Attention" warns of a possibly hazardous situation for the health of persons or equipment damage.

Disregarding these warnings may result in personal injury or equipment damage.Always observe the instructions given for avoiding this hazard.

Getting Started

R

Mechanical connection

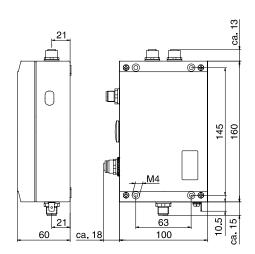


Fig. 1: Mechanical connection

► Attach processor using (4) M4 screws.

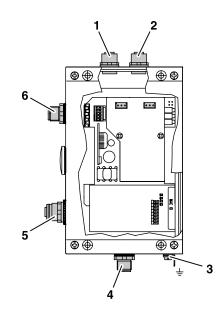
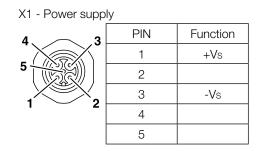
Electrical connection

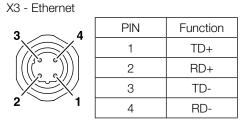
1 Note

Route the ground wire to ground either directly or through an RC combination, depending on the system. When connecting to the Ethernet, be sure that the connector shield is perfectly

connecting to the Ethernet, be sure that the connector shield is perfectly connected to the connector body.

Do not alter the factory setting for the DIL schwitches.


Fig. 2: Electrical connection

- 1 Head 2 Read/write head 2
- 2 Head 1 Read/write head 1
- 3 Function ground FE

- 4 X4 Service port
- 5 X3 Ethernet
- 6 X1 Power supply

Getting Started

X4 - Service port

4 _ 3	PIN	Function
	1	
	2	TxD
	3	GND
1 – 2	4	RxD

Bus connection

There are two ways of making the bus connection:

- Setting the IP address, subnet mask, gateway address and selecting DHCP using the application "Anybus IPconfig" on a Windows PC having an Ethernet network card.
- Using a DHCP server or BOOTP software.

Use the "Anybus IPconfig" program to make the bus connection. The "Anybus IPconfig" application is included on the BIS SD which comes with the processor.

- ► Start "Anybus IPconfig".
 - ⇒ The subnet is scanned for a connected BIS _-6026. The result of the scan is displayed in the "Anybus IPconfig" window.

IP Z	SN	GW	DHCP	Version	Туре	MAC
169.254.22.54	255.255.255.0	169.254.22.254	OH	1.04.1	ABIC-EIP	00-30-11-02-2F-40

► Select the device from the scan list and double-click on it.

3 Getting Started

🖗 Configure: 00-3	30-11-02-2F-40	2
Ethernet configura	ation	
IP address:	169 . 254 . 22 . 54	DHCP
Subnet mask:	255 . 255 . 255 . 0	C On
Default gateway:	169 . 254 . 22 . 254	
Primary DNS:	· · · ·	
Secondary DNS:	· · · ·	
Hostname:		
Password:		Change password
New password:		
		Set Cancel

- Assign the IP address, subnet mask and gateway address.Turn DHCP on/off.
- Confirm your settings by clicking on Set.

Basic Knowledge

4.1	Identification system principles of operation	The BIS L identification system belongs to the category of non-contact systems having a read and write function. This enables you to not only read data contained in the data carriers, but also to write new data to them at any point in the process.
		 The main components of the BIS L identification system are: Processor, read/write heads, data carriers.
		 The main areas of application are: In production for controlling material flow (e.g. for variant-specific processes, workpiece transport using conveying systems, for collecting safety-related data), in inventory systems for monitoring inventory movements, in transport and conveying technology.
4.2	Product description	 BIS L-6026 processor: Metal enclosure, round connectors for making plug connections, capacity for two read/write heads, read/write heads are suitable for both dynamic and static operation, processor provides power for system components, Carrier signal from the read/write heads provides power for the data carrier.
4.3	Control function	The processor represents the link between the data carrier and the host control system. It manages two-way data transfer between the data carrier and read/write head and provides a buffer storage function. The processor writes data from the host signal to the data carrier through the read/write head, or reads data from the data carrier and makes the data available to the host system.
		Host systems may be: – A control computer (e.g. industrial PC), – a PLC.
		Dual bit-header: In order to ensure consistency of the transmitted data, the control bits in the first and last byte (bit-header) of the data buffer for each read/write head are sent and compared. If the two bit-headers are identical, then the data were fully updated and may be accepted. This means that the data for each read/write head are only valid if both bit-headers are identical. The host system must therefore also compare the bits in the bit-headers.
4.4	Data integrity	To ensure data integrity the data transfer between data carrier and processor must be monitored using a check procedure. The factory default setting in the processor is for double read with compare. A CRC_16 check may however be selected as an alternative. In CRC_16 checking a check code is written to the data carrier, which enables checking the data for validity at any time. Which procedure is used depends on how you are using the identification system.
		Note Mixed operation of the two check procedures is not possible!

Basic Knowledge

The following table provides an overview of the advantages of each respective check procedure.

CRC_16 data check	Double read
Data integrity even during the non-active phase (data carrier outside the read/write head).	No user data bytes are lost for storing a check code.
Shorter read time – page is read just once.	Shorter read time – no check code is written.

4.5 Bus connection The processor and host system communicate using EtherNet/IP protocol.

EtherNet/IP is an industrial network standard. The IP in EtherNet/IP stands for "Industrial Protocol". EtherNet/IP uses the open communications protocol "Common Industrial Protocol" (CIP) on the application layer (as per the ISO/OSI reference model). EtherNet/IP is supported by the network organization "Open DeviceNet Vendor Association".

Use of a switch in full-duplex mode is necessary for collision-free data exchange.

5 Technical Data

Dimensions

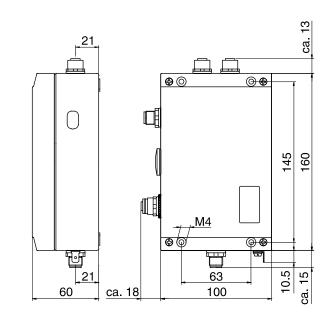


Fig. 3: Dimensions in mm

Mechanical data

Housing material	EN AC-AISi12 (a), DIN EN 1706
X1 – Input	V _s 24 VDC – 5-pin terminal
X3 – Ethernet	M12 – 4-pin socket, D-coded
X4 – Service port	RS 232 – 4-pin terminal
Head 1, 2 (Write/read head connections)	8-pin socket
Enclosure rating	IP65 (with plugs connected)
Weight	950 g

Electrical data

Operating voltage V_s	24 V DC ±10 %
Ripple	≤ 10 %
Current consumption	≤ 400 mA
Device interface	Ethernet
Service port	RS 232

5 Technical Data

Operating conditions

Ambient temperature	0 °C 60 °C
EMV	
– EN 61000-4-2/3/4/5/6 – EN 55011	Severity level 4A/3A/4A/1A/3AGr. 1, Cl. A
Shock/Vibration	EN 60068 Part 2-6/27/29/64/32

Function indicators

BIS operating states	Ready CT1 Present/Operating CT2 Present/Operating	Green LED Green/yellow LED Green/yellow LED
Status EtherNet/IP	Data Rate (DR) Module Status (MS) Network Status (NS) Link/Activity (L/A)	LED LED LED LED

BIS L-6026 EtherNet/IP Processor

installation

6.1 Processor installation

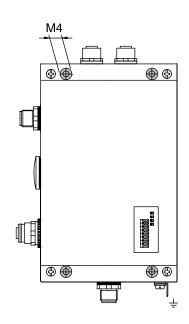
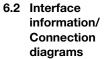



Fig. 4: Installation

► Attach processor using (4) M4 screws.

i Note

Route the ground wire to ground either directly or through an RC combination, depending on the system. When connecting to the Ethernet, be sure that the connector shield is perfectly

when connecting to the Ethernet, be sure that the connector shield is perfectly connected to the connector body.

Do not alter the factory setting for the DIL switches.

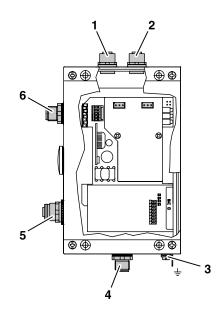
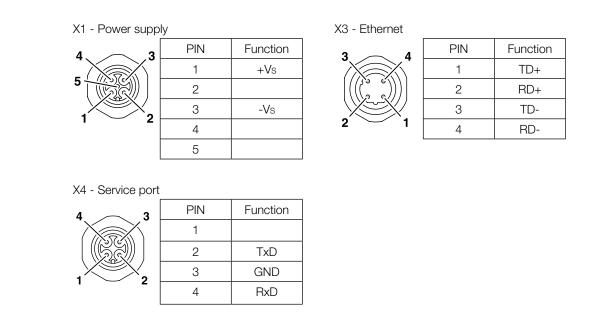



Fig. 5: Processor connections

- 1 Head 2 Read/write head 2
- 2 Head 1 Read/write head 1
- 3 Function ground FE

- 4 X4 Service port
- 5 X3 Ethernet
- 6 X1 Power supply

installation

6.3 Changing the EEPROM

Attention!

Components may be damaged by electrostatic discharge.
 Be sure to turn off power to the device before opening it.

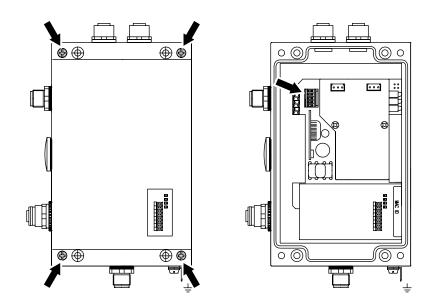


Fig. 6: Changing the EEPROM

- ► Remove 4 screws from housing cover and remove cover.
- ► Pull EEPROM from socket.
- ► Insert new EEPROM into socket.
- ► Replace cover and tighten 4 screws.

7 Bus Connection

7.1	IP address	The processor and host system communicate using EtherNet/IP protocol. Assigning a unique IP address associates the processor with a network.
		The processor can be incorporated into a network in various ways (DHCP, ARP). The MAC address is used as the basis for incorporating into the network. This hardware address is used only one time and uniquely identifies network devices such as the processor.
	DHCP	Dynamic Host Configuration Protocol (DHCP) allows a server to be used for dynamic assigning of an IP address. The hardware can be inserted into the network without having to perform any additional configuration. Only automatic obtaining (MAC address) of the IP address needs to be set.
7.2 AnyBus IPconfig		"AnyBus IPconfig" is software which allows the hardware to be addressed for the corresponding subnet prior to installation. In addition, assigning of the IP address through a DHCP server or BOOTP program can be activated (DHCP on) or deactivated (DHCP off). The "Anybus IPconfig" application is included on the BIS SD which comes with the processor. Start "Anybus IPconfig".
		The subnet is scanned for a connected BIS6026. The result of the scan is displayed in the "Anybus IPconfig" window.
		🖝 Anybus IPconfig

Allybus IPcollin	y							
IP A	SN	GW	DHCP	Version	Туре		MAC	
169.254.22.54	255.255.255.0	169.254.22.254	Off	1.04.1	ABIC-EIP		00-30-11-02-	-2F-40
						Scan		Exit

- Select the device from the scan list and double-click on it.
 - \Rightarrow The "Configure" window is opened.

7 **Bus Connection**

Ethernet configura	ition	
IP address:	169 . 254 . 22 . 54	DHCP
Subnet mask:	255 . 255 . 255 . 0	O On
Subrict mask.	200 . 200 . 200 . 0	Off
Default gateway:	169 . 254 . 22 . 254	
D. D. D.		
Primary DNS:		
Secondary DNS:		
Hostname:		
Password:		🔲 Change password
New password:		

- Assign the IP address, subnet mask and gateway address.
 Turn DHCP on/off.
- Confirm your settings by clicking on Set.

8.1 Basic knowledge

Data carrier types

Two data carrier models are available for the BIS L-6026 processor. Depending on your selection either all or only one particular data carrier can be processed.

Data carrier	BIS L-1001/L	BIS L-2003/L	
Parameter			
Memory capacity	192 bytes of user data (read/write) + 4 bytes of fixed serial number (read- only).	5 bytes of fixed serial number (read-only), corresponding to the user data.	
CT Present	The first user data are read from the data carrier and loaded into the input buffer. If " <i>Output function type and serial num</i> gured:	5 bytes of the serial number are read from the data carrier and loaded into the input buffer. <i>mber when CT present</i> " is confi-	
	Output type 01hex in byte 1 of the input buffer and then the 4 bytes of unique serial number.	Output type 03 _{hex} in byte 1 of the input buffer and then the 5 bytes of unique serial number.	
Functions	The full command set of the BIS L-6026 processor is available.	No commands from the BIS L-6026 processor are required (all data are output as soon as CT Present is active).	
Device parameters	Depends on the number of bytes to be read/written for each read/write head.	<i>DTTyp</i> to 'All Tag Types' or 'BIS L-20_' <i>TypSN</i> to 'Enable'.	

Type BIS L-10_-01/L data carriers are shipped configured with FFnex37hex . Only data

carriers having this configuration are processed.

The BIS L-10_-01/L carrier contains additional memory ranges for configuration and protected data. These ranges cannot be processed using the BIS L-6026 processor.

CRC check

The CRC check is a procedure for determining a test value for data so as to detect errors in transferring data. If CRC check is activated, an error message is output when a CRC error is detected.

Initializing

To be able to use the CRC check, the data carriers must be initialized. The data carriers are initialized in the output buffer using the command 12_{hex} If the data carrier does not contain the correct CRC, then the processor sets an error message in the input buffer (see Example 10 on page 44).

As shipped from the factory, data carriers may be immediately written a checksum, since all the data are set to 0.

Error message

- If an error message is the result of a failed write job, then the data carrier must be reinitialized before it can be used again.
- If an error message is not the result of a failed write job, then one or more of the memory cells in the data carrier are defective. This means the data carrier must be replaced.

Checksum

The checksum is written to the data carrier as a 2-byte information. 2 bytes per block are lost. This leaves 14 bytes remaining per block. The usable number of bytes can be determined from the following table.

Data carrier type	Memory capacity	Usable bytes
BIS L-1001/L	192 bytes	168 bytes
BIS L-2003/L	5 bytes	CRC_16 is not supported

Simultaneous	Reading
data transmission	The processor reads the data from the data carrier directly into the input buffer. As soon as the buffer is filled, the Toggle-Bit Out (TO-Bit) is inverted to indicate data ready to the host system. The system inverts the Toggle-Bit In (TI-Bit) to indicate that it is ready to receive, and data read in the meantime are transmitted to the input buffer. This repeats itself until the desired data have been read from the data carrier. After the read procedure is finished, the processor sets the Job End bit (AE-bit) and transmits the remaining data to the input buffer (see example 2 on page 36).
	Writing The processor begins to write data to the data carrier as soon as it has received the first data from the host system. Once all the data have been written to the data carrier, the AE-bit is set.
Dynamic mode	As soon as the Dynamic function is activated, the processor accepts the read/write job from the host system and stores it regardless of whether there is a data carrier in the active zone of the read/write head. When a data carrier enters the active zone of the read/write head, the stored job is carried out
Auto-Read (Standard)	When a data carrier enters the active zone of the read/write head 14 bytes starting at address OO_{hex} are automatically read into the input buffer. No additional read command is required. This allows small data amounts which are stored starting at address OO_{hex} to be read faster. If a BIS L-2003/L data carrier is in front of the read/write head, a maximum of 5 bytes are sent to the input buffer.
	If the parameter <i>TypSN</i> (Type and serial number when CT Present) is set, then instead of the user data the data carrier type and the unique serial number of the data carrier are sent. For type BIS L-2003/L this is always the serial number.

	Auto-Read Extra	If Auto-Read <i>Extra</i> is activated, then the 14 bytes starting at a specified address are read from the data carrier to the input buffer and then the Codetag Present bit (CP bit) is set. The start address is specified using the parameter <i>Extra_Adr</i> .				
				version V2.0 and higher the number of bytes to read sing the parameter <i>CP_Number</i> .		
	Type and serial number		issued. For the	nt the data carrier type and serial number (UID = unique data carrier type BIS M-1 $_$ -02/L this is a useful appli-		
8.2	Parameterizing	There are two different w using the EDS file.	ays to set param	eters. Parameterizing from an application program or		
	Basics	The parameters for operating the processor are stored in the BIS Sonfig Object (class 6 Explicit messages are used to access the parameters.				
		 Parameterizing from an application program One widely used application for EtherNet/IP device parameterizing is the Wind RSLogix 5000 written for the Logix 5000 controller of Rockwell Automation. And device programming is included on the BIS-CD. For additional information see "Example for parameterizing with application program" on page 21. EDS file The EDS file contains all the device parameters for the processor. The file is ind BIS-CD. 				
	Parameters	CRC_16	class: instance: attribute:	64hex 01hex 01hex		
		Factory setting:	Disable	(= 0)		
		Data validity is checked	using double rea	ad.		
		Other settings:	Enable	(= 1)		
		Data validity is ensured	using CRC chec	κ.		
		Simultaneous	class: instance: attribute:	64hex 01hex 02hex		
		Factory setting:	Disable	(= 0)		
		Read/write jobs and dat	ta transmission a	re run in sequence.		
		Other settings:	Enable	(= 1)		
		Read/write jobs and dat	ta transmission a	re run simultaneously.		

Dynamic1	class:	64hex
	instance: attribute:	O1hex O3hex
Factory setting:	Disable	(= 0)
	tatic mode. Re	ad/write command from the controller is carried out
		e zone of Read/Write Head 1.
Other settings:	Enable	(= 1)
Read/Write Head 1 is in c	lynamic mode.	
Dynamic2	class:	64hex
	instance: attribute:	01hex 04hex
Factory setting:	Disable	(= 0)
Read/write head 2 is in st		ad/write command from the controller is carried out e zone of Read/Write Head 2.
Other settings:	Enable	(= 1)
Read/Write Head 2 is in c	dynamic mode.	
Extra1	class:	64hex
	instance: attribute:	01hex 05hex
Factory setting:	Disable	(= 0)
	s a data carrier	r in the active zone of Read/Write Head 1.
Other settings:	Enable	(= 1)
The Auto-Read function is	s active.	
Eutro 0		04
Extra2	class: instance: attribute:	
Factory setting:	Disable	(= 0)
CT Present data if there is	s a data carrier	r in the active zone of Read/Write Head 2.
Other settings:	Enable	(= 1)
The Auto Deed function i	e estive	

The Auto-Read function is active.

Extra_Adr1	class: instance: attribute:	-
Factory setting:	0	
Other settings:	1191	

Specifies the start address (Auto-Read) beginning at which the data carrier is read when a data carrier enters the active zone of Read/Write Head 1.

class: instance: attribute:	-
0	
1191	
	instance: attribute: 0

Specifies the start address (Auto-Read) beginning at which the data carrier is read when a data carrier enters the active zone of Read/Write Head 2.

TypSN	class: instance: attribute:			
Factory setting:	Disable	(= 0)		
At CT Present the data carrier type and the serial number of the data carrier are output.				
Other settings:	Enable	(= 1)		

class: instance: attribute:	64hex 01hex 0Ahex
All data carrier types	(= 0)
either all or only one part	ticular data carrier can be processed.
BIS L-1001/L	(= 1)
Not used	(= 2)
BIS L-2003/L	(= 3)
	instance: attribute: All data carrier types either all or only one part BIS L-1001/L Not used

CP_Number1	class: instance: attribute:	-
Factory setting:	4	
Other settings:	114	

Specify the number of bytes to be read when a data carrier enters the active zone of read/write head 1.

Only active for hardware version V2.0 and higher of the read/write head. For hardware versions <V2.0 14 bytes are always read.

CP_Number2	class: instance: attribute:	-
Factory setting:	4	
Other settings:	114	

Specify the number of bytes to be read when a data carrier enters the active zone of read/write head 2.

Only active for hardware version V2.0 and higher of the read/write head. For hardware versions < V2.0 14 bytes are always read.

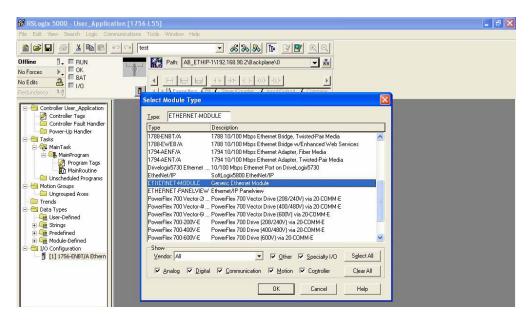
Example of parameterizing using the application program

This example shows how the example project included on the BIS-CD can be used with the RSLogix 5000 software for a user project.

Note the following procedure:

- 1. Add the BIS L-6026 to a user project.
- 2. Import the example project into a new project.
- 3. Copy user-defined data type from the example project to the user project.
- 4. Create a sub-routine in the user project.
- 5. Set invoking of the sub-routine in the main program of the user program.

To run the example the files stored on the BIS-CD must by copied to a local directory.



Note

Information about the software, installation, creating projects and working in projects can be found in the manual for the RSLogix 5000 manual.

1. Add the processor

- Open user project. ►
- Under I/O-Configuration\[1] 1756-ENBT/A ETHERNETIP create a new module. ► (type: Generic Ethernet Module).

►	Set module properties:		
	Name: Communication format: IP address:	0	BIS_L Data SINT 192.168.90.3

Set the connection parameters as follows:

		Instance	Size
Connection parameters	Input:	100	32 bytes
	Output:	150	32 bytse
	Configuration:	1	0

i

Note

"Configuration" is not supported. Therefore the values are set to 1 and 0.

Module Pre	operties - EthernetIP (ETHERN	VET-MODULE 1.	1)	2
General Con	nection Module Info			
Type: Vendor: Parent:	ETHERNET-MODULE Generic Ether Allen-Bradley EthernetIP			
Na <u>m</u> e:	BIS_L	Connection Par		
Description:			Assembly Instance:	Size:
		Input:	100	32 ÷ (8-bit)
		O <u>u</u> tput:	150	32 🔹 (8-bit)
Comm <u>F</u> ormat	t Data - SINT 📃	<u>C</u> onfiguration	1	0 ÷ (8-bit)
• IP <u>A</u> ddr		<u>S</u> tatus Input:		
C <u>H</u> ost Na	ame:	S <u>t</u> atus Outpul		
Status: Offline	ОК	Cancel	Apply	Help

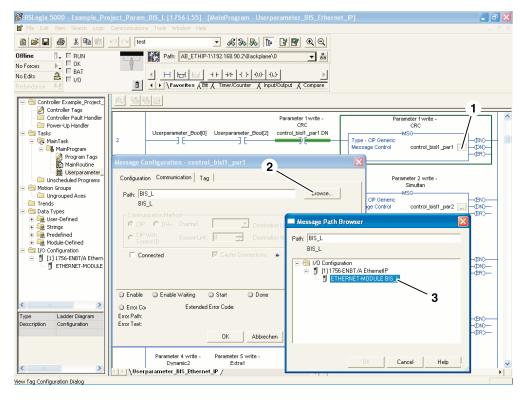
 Save settings by clicking on "OK" and confirm the remaining dialog fields until the module has been successfully created.

Note

When confirming the dialog fields, be sure that the Requested Packed Interval (RPI) \geq 10 ms is set.

2. Import example project

Only one project per window can be opened in RSLogix 5000.


- ► Open a new project.
- Import the example project "Example_Project_Param_BIS_L.L5K" from the local directory to the project (File\Open).
- ► Save example project in *.ACD format (File\Save as) File name is freely selectable.

3. Copy user-defined data type

- ► Under Data Types\User defined in the example project copy "BIS_L_Userparameters".
- ► Under Data Types\User defined in the example project paste "BIS_L_Userparameters".

4. Create a sub-routine in the user project

- ► Under Tasks\MainTask\MainPRogRam in the user project create a new routing with the name "Userparameters_BIS_Ethernet_IP".
- Double-click to open the new routine.
- ► Right-click on "Import flow path" from the context menu.
- Import the file "Example_Project_Rung_BIS_L.L5X" from the local directory to the user project.
- ► Reconfigure the communication paths for all messages see screenshot for sequence.

5. Set invoking of the sub-routine

- ► Under Tasks\MainTask\MainProgram select MainRoutine.
- In the MainRoutine set "Userparameter_Bool (0)" to high. \Rightarrow Sub-routine is activated.

9.1 Function principle BIS L-6026
 Bis L-6026
 Two buffers are required to exchange data and commands between the processor and the host system. Cyclical polling is used for exchanging the buffer contents. The buffer content depends on the cycle in which it is written (e.g. control commands at the start of the job). When writing the buffer, the transmitted data from the previous cycle are overwritten. Unwritten bytes are not deleted and retain their data content.

The buffer size of the overall buffer is 32 bytes. 16 bytes are available for each read/write head.

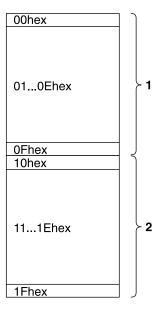


Fig. 7: Total buffer Read/Write Heads 1 and 2

1 Read/Write Head 1

2 Read/Write Head 2

Only 14 bytes per read/write head are available for data exchange, since the first and last bytes in the respective data buffer are used for control and for status messages.

The output buffer is used to transmit the identification system commands and the data to be written to the data carrier.

Bit no.	7	6	5	4	3	2	1	0
Subaddress								
00 _{hex} = Bit header		TI	KA			GR		AV
01hex			Commanc			or	Da	ata
02hex	Stare	Stared address (Low Byte) or program no.			m no.	or	Da	ata
03hex		Start address (High Byte)				or	Da	ata
04hex		No. of bytes (Low Byte)				or	Da	ata
05hex		No. of bytes (High Byte)				or	Da	ata
06hex	Data							
	Data							
0F _{hex} = Bit header		TI	KA			GR		AV

Output buffer

Allocation and explanation

Subaddress	Bit name	Meaning	Function description
00hex/0Fhex	ΤI	Toggle-Bit In	Controller is ready to receive additional data (read job).
	KA	Head deselect	Turns the read/write head off.
	GR Base s		Identification goes into base state for the respective read/write head. Any pending job is cancelled.
	AV	Job	A job is pending for the respective read/write head.

Subaddress	Meaning	Function description
01hex	Command	
	00hex	No command.
	01hex	Read data carrier.
	02hex	Write to data carrier.
	06hex	Save program for
		"Mixed data access" in EEPROM.
	12hex	Initialize CRC_16 data check.
	21hex	Read data carrier as per a program for
		"Mixed data access".
	22hex	Write to data carrier as per a program for
		"Mixed data access".
	or Data	Transmitting data written to the data carrier.
	or	Transmitting program data written to the EEPROM.
	Program data	

02hex	Start address (Low Byte)	Address starting at which reading or writing should commence (address range from 0 to 191 is covered).
	or Program No.	Program No. to be stored for "Mixed Data Access" in conjunction with command 06hex (value range 01hex to 0Ahex).
	or Program No.	Program No. to be run for "Mixed Data Access" in con- junction with command 21 _{hex} or 22 _{hex} (value range 01 _{hex} to 0A _{hex}).
	or Data	Transmitting data written to the data carrier.
	or Program data	Transmitting program data written to the EEPROM.

03hex	Start address (High Byte)	Address starting at which reading or writing should com- mence (at current data carrier capacity always 0).
	or Data	Transmitting data written to the data carrier.
	or Program data	Transmitting program data written to the EEPROM.

Subaddress	Meaning	Function description
04hex	No. of bytes (Low Byte)	No. of bytes (1 to 192 bytes) to read or write beginning at the start address (Low Byte).
	or Data	Transmit the data which are written to the data carrier.
	or Program data	Transmitting program data written to the EEPROM.
05hex	No. of bytes (High Byte)	No. of bytes to read or write commencing with the start address (at current data carrier capacity always 0).
	or	Transmitting data written to the data carrier.

or Data	Transmitting data written to the data carrier.
or Program data	Transmitting program data written to the EEPROM.

06hex	Data	Transmitting the data written to the data carrier.
	or Program data	Transmit the program data which are written to the EEPROM.

 Data	Transmitting the data written to the data carrier.
or Program data	Transmit the program data which are written to the EEPROM.

Input buffer

The input buffer is used to transmit the data read by the identification system, the identifiers and error codes to the host system.

Bit no. Subaddress	7	6	5	4	3	2	1	0
00 _{hex} = Bit header	BB	HF	ТО		AF	AE	AA	CP
01hex	D1hex Error code		e or Data					
02hex	Data							
			Da	ata				
0F _{hex} = Bit header	BB	HF	ТО		AF	AE	AA	CP

Allocation and explanation

Subaddress	Bit name	Meaning	Function description
00hex/0Fhex	BB	Ready	Identification system is ready.
	HF	Head error	Cable break on read/write head or no read/ write head connected.
	то	Toggle-Bit Out	Read procedure: Identification system has additional data ready. Write procedure: Identification system can accept additional data.
	AF	Job error	Error in processing the job, or job cancelled.
	AE	Job end	Confirmation – Job ended without error.
	AA	Job start	Confirmation – Job was recognized and started.
	СР	Codetag Present	There is a data carrier in the active zone of the read/write head.

Subaddress	Meaning	Function description
01hex	Error code	Error number valid only with AF-bit!
	01hex	Job cannot be carried out becoffe there is no data carrier in the active zone of the read/write head.
	02hex	Read error.
	03hex	Data carrier was removed from the active zone of the read/ write head during reading.
	04hex	Write error.
	05hex	Data carrier was removed from the active zone of the read/ write head during writing.
	06hex	Memory access error.
	07 _{hex}	Invalid or no command for set AV-bit or number of bytes is O0hex.
	09hex	Cable break on read/write head or no read/write head connected.
	OChex	EEPROM cannot be read or programmed.
	ODhex	Communication fault with data carrier.
	OEhex	CRC for read data and CRC for data carrier do not agree.
	OFhex	1 st and 2 nd bit header are not identical. The 2 nd bit header must be operated.
	20hex	Addressing of the read/write job is outside the memory range of the data carrier.
	21hex	This function is not possible for this data carrier.
	or Data	Transmit data which were read from the data carrier.
02hex	Data	Transmit data which were read from the data carrier.

02hex	Data	Transmit data which were read from the data carrier.
	Data	Transmit data which were read from the data carrier.

Communication	Communication between the host system and the processor is defined by a sequence protocol. A control bit in the output and input buffer is used to implement communication between the host system and the processor.				
	 Basic sequence Controller sends command in output buffer to processor with set AV bit. The AV bit tells the processor that a job is beginning and the transmitted data are valid. Processor takes the job and confirms the job by setting the AA bit in the input buffer. If additional data need to be exchanged for the job, readiness for additional exchange is indicated by inverting the Toggle-Bits TI and TO. The processor has correctly executed the job and set the AE bit in the input buffer. The controller has received all data. The AV bit in the output buffer is reset. The processor resets all the control bits (AA, AE) in the input buffer which were set during the job. The processor is ready for the next job. 				
Mixed data access	By carrying out read/write programs it is possible to write data to various address ranges on the data carrier or read data which are contained in various address ranges on the data carrier. This function is referred to as "Mixed data access". The read/write programs are stored in the processor's EEPROM. 10 programs with up to 25 instructions can be stored. Each program instruction contains the information about the start address and number of bytes. The maximum allowable amount of data that can be transmitted is 2 kB.				

Command O6hex in the output buffer sends the program to the processor. Saving a program is considered a job. All 25 instructions and two additional bytes with FFhexFFhex as an end delimiter must always be transmitted. This means that 104 bytes per program, including the command and program number, are transmitted (see example 7 on page 41).

Program structure example:

	Program structure	Subaddress	Value	Value range
Comm	hand	01hex	06hex	
1. Pro	gram set			
Pro	gram number	02hex	01hex	01 hex to 0Ahex
1.	Data record			
	Start address Low Byte	03hex		
	Start address High Byte	04 _{hex}		
	Number of bytes Low Byte	05hex		
	Number of bytes High Byte	06hex		
2.	Data record			
25.	Data record			
	Start address Low Byte	03hex		
	Start address High Byte	04hex		
	Number of bytes Low Byte	05hex		
	Number of bytes High Byte	06hex		
End de	elimiter	FFhexFFhex		

Running programs:

The programs stores in the EEPROM may be used for reading data records from data carriers as well as for writing data records to a data carrier. The command 21_{hex} (read) or 22_{hex} (write) in the output buffer is used to specify reading or writing (see example 8 on page 42 and example 9 on page 43).

Read/write times

i

Note

All specifications are typical values. Deviations are possible depending on the application and combination of read/write head and data carrier. The specifications apply to static operation, no CRC_16 data checking.

Read times:

Data carrier BIS L-1 with 4-byte blocks			
Data carrier recognition	~ 370 ms		
Read bytes 0 to 3	~ 180 ms		
for each additional start of 4 bytes	+ ~ 90 ms		

Data carrier BIS L-2				
Data carrier recognition + Read data carrier	~ 270 ms			

Write times:

Data carrier BIS L-1 with 4-byte blocks				
Data carrier recognition	~ 370 ms			
Write bytes 0 to 3	~ 305 ms			
for each additional start of 4 bytes	+ ~ 215 ms			

Data carrier BIS L-2					
Writing not possible					

9.2 Function indicators

The operating states of the identification system, the Ethernet connection and the EtherNet/IP connection are indicated by means of LED's.

Overview of indicators

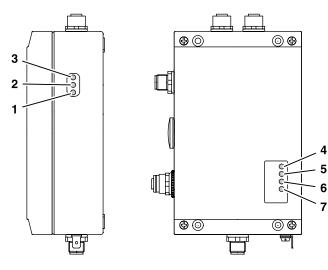


Fig. 8: Function indicators

- Identification system
- 1 CT2 Present/Operating
- 2 CT1 Present/Operating
- 3 Ready

Ethernet and EtherNet/IP

- 4 Data Rate (DR)
- 5 Module Status (MS)
- 6 Network Status (NS)
- 7 Link/Activity (L/A)

Power-up

During power-up all LED's for the Ethernet and EtherNet/IP connection are tested as described in the following table.

LED name	LED sequence						
Data Rate (DR)	off green red					red	
Module Status (MS)	green red green						
Network Status (NS)	off		green	red	off		
Link/Activity (L/A)	off			green	red	0	ff

Diagnostics Identification system

Status LED	Meaning
Ready	
green	Operating voltage present; no hardware error

CT1 Present/Operating				
green	Data carrier ready to read/write at Read/Write Head 1			
yellow	Read/write job being processed at Read/Write Head 1			
yellow flashing	Cable break on Read/Write Head 1 or Read/Write Head 1 not connected.			
off	No data carrier in the active zone of the Read/Write Head 1.			

Status LED	Meaning			
CT2 Present/Operating				
green	Data carrier ready to read/write at Read/Write Head 2			
yellow	Read/write job being processed at Read/Write Head 2			
yellow flashing	Cable break on Read/Write Head 2 or Read/Write Head 2 not connected.			
off	No data carrier in the active zone of the Read/Write Head 2			

Ethernet- and EtherNet/IP connection

Status LED	Meaning
Data Rate	
off	Transmission rate 10 Mbit
green	Transmission rate 100 Mbit
red	-

Module Status				
off	No power to module			
green	Device ready			
green flashing	Module configuration missing or incorrect			
red	Non-clearable error			
red flashing	Clearable error			

Network Status				
off	No voltage or no IP address			
green	Device has at least one EtherNet/IP connection			
green flashing	Device has no EtherNet/IP connection			
red	An IP address is duplicated			
red flashing	One or more EtherNet/IP connections has timed out			

Link/Activity			
off	No power		
green	Device is connected to Ethernet		
green flashing	RX/TX activity		
red	-		

1. Read 30 bytes on Head 1, start address 10

Controller

Identification system

Process output buffer 2. Process input buffer 1. (note sequence): (note sequence): 01hex Command 01hex 00hex /0Fhex Set AA bit Start address OAhex 01...0Ehex 02hex Enter first 14 bytes 03hex Start address 00hex 00hex /0Fhex Set AE-Bit No. of bytes 1Ehex 04hex 05hex No. of bytes 00hex Set AV bit 00hex /0Fhex Process input buffer: 4. Process input buffer: З. 01...0Ehex Copy first 14 bytes 01...0Ehex Enter second 14 bytes Process output buffer: 00hex /0Fhex Invert TO-Bit 00hex /0Fhex Invert TI-Bit 5. Process input buffer: 6. Process input buffer: 01...0Ehex Copy second 14 bytes 01...02hex Enter last bytes Process output buffer: 00hex /0Fhex Invert TO-Bit 00hex /0Fhex Invert TI-Bit 8. Process input buffer: 7. Process input buffer: 01...02hex Copy last bytes 00hex /0Fhex Reset AA and AE-Bit Process output buffer: 00hex /0Fhex Reset AV-Bit

2. Read 30 bytes on Head 1, start address 10, simultaneous data transmission

While the read job is being carried out and as soon as sufficient data have been read for filling the input buffer of Read/Write Head 1, these data are sent to the input buffer. The AE bit is not set until the "Read" operation has been finished by the processor.

The reply "Job End" (AE-Bit) is reliably set no later than when the last data are sent. The actual time depends on the requested amount of data and the time response of the controller. In the example the italicized "Set AE-Bit" draws your attention to this fact.

Controller

Identification system

1. Process output buffer (note sequence):			2. Process input buffer (note sequence):		
01hex	Command 01hex		00hex /0Fhex	Set AA bit	
02hex	Start address OAhex		010Ehex	Enter first 14 bytes	
03hex	Start address 00hex		00hex /0Fhex	Invert TO-Bit	
04hex	No. of bytes 1Ehex		00hex /0Fhex	Set AE-Bit	
05hex	No. of bytes 00hex				
00hex /0Fhex	Set AV bit				
3. Process i	nput buffer:		4. Process i	nput buffer:	
010Ehex	Copy first 14 bytes		010Ehex	Enter second 14 bytes	
Process	output buffer:	-	00hex /0Fhex	Invert TO-Bit	
00hex /0Fhex	Invert TI-Bit]	00hex /0Fhex	Set AE-Bit	
5. Process input buffer: 6. Process input buffer:					
010Ehex	Copy second 14 bytes		0102hex	Enter last bytes	
Process	Process output buffer:		00hex /0Fhex	Invert TO-Bit	
00hex /0Fhex	Invert TI-Bit]	00hex /0Fhex	Set AE-Bit	
7. Process input buffer: 8. Process input buffer:					
0102hex	Copy last bytes		00hex /0Fhex	Reset AA and AE-Bit	
	Process output buffer:				
00hex /0Fhex	Reset AV-Bit				

3. Read 30 bytes on Head 1, start address 10, with read error

If an error occurs, the AF-Bit with corresponding error number is provided instead of the AE-Bit. Setting the AF-Bit cancels the job and declares it as ended.

Controller

- Process output buffer 1. (note sequence):
- Process input buffer 2. (note sequence): If error occurs immediately!

		- 11111111111		· · · · · · · · · · · · · · · · · · ·
01hex	Command 01hex		00hex /0Fhex	Set AA bit
02hex	Start address 0Ahex		01hex	Enter error number
03hex	Start address 00hex]	00hex /0Fhex	Set AF-Bit
04 _{hex}	No. of bytes 1Ehex			
05hex	No. of bytes 00hex			
00hex /0Fhex	Set AV bit			
0			4	
3. Process i	input buffer:	, ji	4. Process in	nput buffer:
01hex	Copy error number		00hex /0Fhex	Reset AA and AF-Bit
Process	output buffer:	_		
00hex /0Fhex	Reset AV-Bit			

4. Read 30 bytes on Head 1, start address 10, simultaneous data transmission, with read error

Controller

- 1. Process output buffer (note sequence):
- 2. Process input buffer (note sequence): If error occurs immediately!

01hex	Command 01hex		00hex /0Fhex	Set AA bit
02hex	Start address 0Ahex		01hex	Enter error number
03hex	Start address 00hex		00hex /0Fhex	Set AF-Bit
04 _{hex}	No. of bytes 1Ehex			
05hex	No. of bytes 00hex			
00hex /0Fhex	Set AV bit			
3. Process i	input buffer:		4. Process ir	nput buffer:
01hex	Copy error number		00hex /0Fhex	Reset AA and AF-Bit
Process	output buffer:	I		I]
00hex /0Fhex	Reset AV-Bit			

5. Read 30 bytes on Head 1, simultaneous data transmission, start address 10, with read error

1 Note

If an error occurs after data have begun to be sent, the AF-Bit with corresponding error number is provided instead of the AE-Bit. The error message AF is dominant. Which data are faulty cannot be specified. Setting the AF-Bit cancels the job and declares it as ended.

Controller

Identification system

1. Process output buffer 2. Process input buffer (note sequence): (note sequence): 01hex Command 01hex 00hex /0Fhex Set AA bit 02hex Start address OAhex 01...0Ehex Enter first 14 bytes 00hex /0Fhex 03hex Start address 00hex Invert TO-Bit 04hex No. of bytes 1Ehex 05hex No. of bytes 00hex Set AV bit 00hex /0Fhex З. Process input buffer: 4. Process input buffer: If error has occurred! 01...0Ehex Copy first 14 bytes 01hex Enter error number Process output buffer: 00hex /0Fhex Set AF-Bit 00hex /0Fhex Invert TI-Bit Process input buffer: 6. Process input buffer: 5. 01...0Ehex Copy error number 00hex /0Fhex Reset AA and AF-Bit Process output buffer: 00hex /0Fhex Reset AV-Bit

6. Write 30 bytes on Head 1, start address 20

Controller

1. Process (note sec	output buffer quence):		2.	Process i (note seq	nput buffer uence):
01hex	Command 02hex		00r	ex /0Fhex	Set AA bit, invert TO-Bit
02hex	Start address 14hex				
03hex	Start address 00hex				
04hex	No. of bytes 1Ehex				
05hex	No. of bytes 00hex				
00hex /0Fhex	Set AV bit				
3. Process	output buffer:		4.	Process of	output buffer:
010Ehex	Enter first 14 bytes		01.	0Ehex	Copy first 14 bytes
00hex /0Fhex	Invert TI-Bit			Process i	nput buffer:
			00r	ex /0Fhex	Invert TO-Bit
5. Process	output buffer:			Process (output buffer: Copy second 14 bytes
00hex /0Fhex	Invert TI-Bit	_	01.		nput buffer:
OUTIEX / OF THEX			00+	ex /0Fhex	Invert TO-Bit
	output buffer:				Dutput buffer:
0102hex	Enter last 2 bytes		01.	02hex	Copy last 2 bytes
00hex /0Fhex	Invert TI-Bit				nput buffer:
				ex /0Fhex	Set AE-Bit
9. Process	output buffer:		10.	Process i	nput buffer:
00hex /0Fhex	Reset AV-Bit			ex /0Fhex	Reset AA and AE-Bit
]			1

7. Mixed data access - Save program (3 data records)

17
3
7
7

Total number of bytes exchanged in the operation:

All 104 bytes are written for this programming.

Controller

00hex /0Fhex

Identification system

Process output buffer 2. Process input buffer 1. (note sequence): (note sequence): 01hex Command 06hex 00hex /0Fhex Set AA bit, invert TO-Bit 02hex Program number 01hex Set AV bit 00hex /0Fhex

3. Process of	output buffer:		MIMMIN	4.	Process i	nput buffer:
01hex	1 st start address	05hex		00r	nex /0Fhex	Invert TO-Bit
02hex		00hex				
03hex	1 st no. of bytes	07 _{hex}				
04hex		00hex				
05hex	2 nd start address	4Bhex				
06hex		00hex				
07hex	2 nd no. of bytes	03hex				
08hex		00hex				
09hex	3 rd start address	70hex				
0Ahex		00hex				
0Bhex	3 rd no. of bytes	11 _{hex}				
0Chex		00hex				
0Dhex /0Ehex	End delimiter FFhexl	-Fhex				
00hex /0Fhex	Invert TI-Bit					
5. Process of	output buffer:			6.	Process i	nput buffer:
01hex0Ehex	(not used) FFhexFFh	ex		00r	nex /0Fhex	Invert TO-Bit
00hex /0Fhex	Invert TI-Bit		7 .			·
17. Process of	output buffer:			18.	Process i	nput buffer:
01hex0Ehex	(not used) FFhexFFh	ex			nex /0Fhex	Set AE-Bit
00hex /0Fhex	Invert TI-Bit		HIN.	When.		
19. Process	output buffer:			20.	Process i	nput buffer:

8. Mixed data access - Reading the data carrier with Program No. 1

Dynamic mode is turned off while the program is running.

A total of 27 bytes are exchanged.

Controller

Identification system

1. Process output buffer

2.	Process input buffer
	(noto sociuonco);

(note sequence):			(note sequence):					
01hex	Command 21hex		00hex /0Fhex	Set AA bit				
02hex	Start address 01hex		010Ehex	Enter first 14 bytes				
00hex /0Fhex	Set AV bit		00hex /0Fhex	Set AE-Bit				
	3. Process input buffer: 4. Process input buffer:							
3. Process	input buffer:	-	4. Process in	nput buffer:				
010Ehex	Copy first 14 bytes		010Dhex	Enter last bytes				
Process	Process output buffer:		00hex /0Fhex	Invert TO-Bit				
00hex /0Fhex	Invert TI-Bit							
7. Process input buffer:		AMMIN .	8. Process in	nput buffer:				
010Dhex	Copy last bytes		00hex /0Fhex	Reset AA and AE-Bit				
Process	output buffer:	_						
00hex /0Fhex	Reset AV-Bit							

9. Mixed data access - Writing the data carrier with Program No. 1

Dynamic mode is turned off while the program is running.

A total of 27 bytes are exchanged.

Controller

1. Process of (note seq	output buffer uence):	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.	Process ir (note sequ	nput buffer uence):
01hex	Command 22hex		00he	ex / 0Fhex	Set AA-Bit
02hex	Program number 01hex				Invert TO-Bit
00hex / 0Fhex	Set AV-Bit				
 Process of 	butput buffer:		4.	Process o	utput buffer:
010Ehex	Enter first 14 bytes			.0Ehex	Enter first 14 bytes
00hex / 0Fhex	Invert TI-Bit			Process	input buffer:
		1		ex / 0Fhex	Invert TO-Bit
5. Process of	output buffer:		6.	Process c	output buffer:
010Dhex	Enter last bytes			ex / 0Dhex	Copy last bytes
00hex / 0Fhex	Invert TI-Bit			Process	input buffer:
				ex / 0Fhex	Set AE-Bit
					input buffer:
00hex / 0Fhex	Reset AV-Bit]	00he	ex / 0Fhex	Reset AA-Bit
					Reset AE-Bit

10. Initialize data carrier for CRC

CRC initializing is handled like a write command. The start address and number of bytes must correspond to the maximum used data quantity.

In the example the complete memory range of a 192-byte data carrier is used. 168 bytes of the data carrier are available as user bytes, since 24 bytes are required for the CRC.

Controller

01hex Command 12hex 02hex Start address 00hex 03hex Start address 00hex 04hex No. of bytes A8hex 05hex No. of bytes 00hex 00hex /0Fhex Set AV bit 3. Process output buffer: 010Enex Enter first 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Set AE-Bit <th colspan="3">1. Process output buffer (note sequence):</th> <th colspan="5">2. Process input buffer (note sequence):</th>	1. Process output buffer (note sequence):			2. Process input buffer (note sequence):				
O3hex Start address O0hex O4hex No. of bytes A8hex O5hex No. of bytes O0hex O0hex /OFhex Set AV bit 3. Process output buffer: 010Enex Enter first 14 bytes 00hex /OFhex Invert TI-Bit 00hex /OFhex Set AE-Bit	01hex	Command 12hex		~	/0Fhex	Set AA bit, invert TO-Bit		
010Enex Enter first 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 00hex /0Fhex Enter second 14 bytes 010Enex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 010Enex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex Copy last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 28. Process input buffer: 28. Process input buffer:	02hex		1					
010Ehex Enter first 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 00hex /0Fhex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex Copy last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 27. Process output buffer: 28. Process input buffer: 28. Process input buffer:	03hex	Start address 00hex						
010Ehex Enter first 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 00hex /0Fhex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex Copy last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 27. Process output buffer: 28. Process input buffer: 28. Process input buffer:	04hex	No. of bytes A8hex						
010Ehex Enter first 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 00hex /0Fhex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex Copy last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 27. Process output buffer: 28. Process input buffer: 28. Process input buffer:	05hex	No. of bytes 00hex						
010Ehex Enter first 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 00hex /0Fhex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TO-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex Copy last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 27. Process output buffer: 28. Process input buffer: 28. Process input buffer:	00hex /0Fhex	Set AV bit						
ODnex /OFnex Invert TI-Bit Process input buffer: Onex /OFnex Invert TO-Bit S. Process output buffer: O10Enex Enter second 14 bytes ODnex /OFnex Invert TI-Bit Onex /OFnex Invert TO-Bit Onex /OFnex Invert TI-Bit Onex /OFnex Set AE-Bit Onex /OFnex Set AE-Bit 28. Process input buffer: 28. Process input buffer:	3. Process	output buffer:		4.	Process	output buffer:		
5. Process output buffer: 010Enex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex Copy last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 28. Process input buffer:	010Ehex	Enter first 14 bytes		01	0Ehex	Copy first 14 bytes		
5. Process output buffer: 6. Process output buffer: 010Ehex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 25. Process output buffer: 00hex /0Fhex 0108hex Enter last bytes 00hex /0Fhex Invert TO-Bit 25. Process output buffer: 0108hex 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 28. Process input buffer:	00hex /0Fhex	Invert TI-Bit			Process	nput buffer:		
010Ehex Enter second 14 bytes 00hex /0Fhex Invert TI-Bit 25. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 26. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 28. Process input buffer: 28. Process input buffer:					/0Fhex	Invert TO-Bit		
ODnex /OFnex Invert TI-Bit Process input buffer: ODnex /OFnex ODnex /OFnex Invert TO-Bit 25. Process output buffer: 0108nex Enter last bytes 00nex /OFnex Invert TI-Bit 26. Process output buffer: 0108nex Copy last bytes 00nex /OFnex Invert TI-Bit Process output buffer: OOnex /OFnex Set AE-Bit 28. Process input buffer: 28. Process input buffer: 28.	5. Process	output buffer:		6.	Process	output buffer:		
25. Process output buffer: 26. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 28. Process input buffer: 27. Process output buffer: 28. Process input buffer:	010Ehex	Enter second 14 bytes		01				
25. Process output buffer: 26. Process output buffer: 0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 27. Process output buffer: 28. Process input buffer:	00hex /0Fhex	Invert TI-Bit				1		
0108hex Enter last bytes 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Invert TI-Bit 00hex /0Fhex Set AE-Bit 27. Process output buffer: 28. Process input buffer:				00hex	/0Fhex	Invert TO-Bit		
OOhex /OFhex Invert TI-Bit Process input buffer: 00hex /OFhex Set AE-Bit	25. Process	output buffer:		26.	Process	output buffer:		
27. Process output buffer: 28. Process input buffer:	0108hex	Enter last bytes		01	08hex	Copy last bytes		
27. Process output buffer: 28. Process input buffer:	00hex /0Fhex	Invert TI-Bit			Process	input buffer:		
				00hex	/0Fhex	Set AE-Bit		
	27. Process	output buffer:	ANNUM MANAMANANA	28.	Process	input buffer:		
			- iuuuuuu	00hex				

11. Set Read/Write Head 1 to base state

Both read/write heads in the identification system can be independently set to the base state.

Controller

Identification system

1. Process output buffer:	2. Go to base state. Process input buffer:
00hex /0Fhex Set GR-Bit	00hex /0Fhex Reset BB-Bit
3. Process output buffer:	4. Process input buffer:
00hex /0Fhex Reset GR-Bit	00hex /0Fhex Set BB-Bit

12. Deselecting the Read/Write Head

In normal operation both read-write heads are selected. Setting the KA bit allows one or both read-write heads to be deselected (turned off).

Controller

 1. Process output buffer:

 O0hex /0Fhex

 Set KA-Bit

Resetting the KA bit selects the read/write head again.

Selecting a read/write head may take up to a second. Deselecting it requires much less time.

BIS L-6026 EtherNet/IP Processor

Appendix

BIS L - 6026 - 034 - 050 - 06 - ST19

Ordering code		BIS L-	<u>6026 - 034 - 050 - 06 - ST1</u>						
	Balluff Identification system								
	Series L Read/Write System								
	Hardware Type 6026 = Metal enclosure, EtherNet/IP								
	Software Type 034 = EtherNet/IP								
	Version 050 = with two ports for external read/write heads BIS L-3								
	Interface 06 = Ethernet								
	Customer connection ST19= Plug variant X1 = Round connector for supply voltage (5-pin male) X3 = Round connector for Ethernet (4-pole female) X4 = Round connector for RS 232 interface (4-pin male)								
Accessories (optional, not	Туре		Ordering code						
included in scope of delivery)	Connector no cable:	for Head 1, Head 2	BKS-S117-00						
	Connection cable	for Head 1, Head 2; 5 m for Head 1, Head 2; 10 m	BIS L-500-PU-05 BIS L-500-PU-10						
	Connection cable: one end with a straight, molded-in connector (female), one end for user-assembled connector, lenght as desired.	for Head 1, Head 2; 25 m	BIS L-501-PU1-25						
	Connection cable: one end with a right-angle format, molded-in connector (female),	for Head 1, Head 2; 25 m	BIS L-502-PU1-25						

lenght as desired.BKS-S 79-00Connectorfor X1BKS-S 79-00for X3BKS-S 182-00Cover capfor X4BES 12-SM-2for Head 1, Head 2Cover cap M12 female
(121 671)

Adapter cable M12 D coded to RJ45

one end for user-assembled connector,

BIS C-526-PVC-00,5

BIS L-6026 EtherNet/IP Processor

Appendix

ASCII Table

Decimal	Hex	Control Code	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	Ctrl @	NUL	43	2B	+	86	56	V
1	01	Ctrl A	SOH	44	2C	,	87	57	W
2	02	Ctrl B	STX	45	2D	-	88	58	Х
3	03	Ctrl C	ETX	46	2E		89	59	Y
4	04	Ctrl D	EOT	47	2F	/	90	5A	Z
5	05	Ctrl E	ENQ	48	30	0	91	5B	[
6	06	Ctrl F	ACK	49	31	1	92	5C	\
7	07	Ctrl G	BEL	50	32	2	93	5D	[
8	08	Ctrl H	BS	51	33	3	94	5E	^
9	09	Ctrl I	HT	52	34	4	95	5F	_
10	0A	Ctrl J	LF	53	35	5	96	60	`
11	0B	Ctrl K	VT	54	36	6	97	61	а
12	0C	Ctrl L	FF	55	37	7	98	62	b
13	0D	Ctrl M	CR	56	38	8	99	63	С
14	0E	Ctrl N	SO	57	39	9	100	64	d
15	0F	Ctrl O	SI	58	ЗA	:	101	65	е
16	10	Ctrl P	DLE	59	3B	;	102	66	f
17	11	Ctrl Q	DC1	60	3C	<	103	67	g
18	12	Ctrl R	DC2	61	3D	=	104	68	h
19	13	Ctrl S	DC3	62	ЗE	>	105	69	i
20	14	Ctrl T	DC4	63	ЗF	?	106	6A	j
21	15	Ctrl U	NAK	64	40	@	107	6B	k
22	16	Ctrl V	SYN	65	41	A	108	6C	I
23	17	Ctrl W	ETB	66	42	В	109	6D	m
24	18	Ctrl X	CAN	67	43	С	110	6E	n
25	19	Ctrl Y	EM	68	44	D	111	6F	0
26	1A	Ctrl Z	SUB	69	45	E	112	70	р
27	1B	Ctrl [ESC	70	46	F	113	71	q
28	1C	Ctrl \	FS	71	47	G	114	72	r
29	1D	Ctrl]	GS	72	48	Н	115	73	S
30	1E	Ctrl ^	RS	73	49	I	116	74	t
31	1F	Ctrl _	US	74	4A	J	117	75	u
32	20		SP	75	4B	K	118	76	v
33	21		!	76	4C	L	119	77	w
34	22		н	77	4D	М	120	78	х
35	23		#	78	4E	Ν	121	79	У
36	24		\$	79	4F	0	122	7A	Z
37	25		%	80	50	Р	123	7B	{
38	26		&	81	51	Q	124	7C	
39	27		í	82	52	R	125	7D	}
40	28		(83	53	S	126	7E	~
41	29)	84	54	Т	127	7F	DEL
			*	85	55	U			

BIS L-6026 EtherNet/IP Processor

Index

A

Abbreviations 5 Accessories 46 AnyBus IPconfig 16 Areas of application 10 ASCII Table 47 Auto-Read Extra 20 Standard 19

В

Bus connection 11

С

Communication 30 Basic sequence 30 Connection diagrams 14 Connections Ethernet 15 Power supply 15 Service port 15 Control function 10 Conventions Enumerations 4 Actions 4 Notation 4 CRC check 18 Checksum 19 Error message 19 Initializing 18

D

Data Electrical 12 Mechanical 12 Data carrier types 18 BIS L-10_-01/L 18 BIS L-20_-03/L 18 Data integrity 10 Description 10 DHCP 16 Dimensions 12 Dual bit-header 10 Dynamic mode 19 **E**

EEPROM, changing 15 Electrical data 12 EtherNet/IP 11

F

Function indicators 13, 33 Diagnostics 33 Overview 33 Power-up 33 Function principle 26 I Indicators 13 Input buffer 28 Allocation and explanation 29 Installation 14 Intended use 6 Interface 14

Μ

Mechanical data 12 Mixed data access 30 Program structure example 31 Running programs 31 Saving programs 30

0

Operating conditions 13 Ordering code 46 Output buffer 26 Allocation and explanation 27 Command 27

Ρ

Parameterizing 20 Application program 20 Basics 20 EDS file 20 Examples 23 Parameters 20 CP_Number1 22 CP_Number2 22 CRC_16 20 DTTyp 22 Dynamic1 20 Dynamic2 21 Extra_Adr1 21 Extra_Adr2 22 Extra1 21 Extra2 21 Simultaneous 20 TypSN 22 Principles of operation 10 Processor installation 14 Product description 10

R

Read/write times 32 Read times 32

S

Safety 6 General notes 6 Warning notes 6 Simultaneous data transmission 19 Reading 19 Writing 19 Symbols 4

W

Write times 32

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Germany Phone +49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de www.balluff.com