

BIS C-6026 EtherNet/IP

Technical Description, User's Manual

english

www.balluff.com

1	User Notes	4
	1.1 Declaration of Conformity and user safety	4
	1.2 About this Manual	4
	1.3 Manual layout	4
	1.4 Conventions	4
	1.5 Symbols	5
	1.6 Abbreviations	5
2	Safety	6
	2.1 Intended use	6
	2.2 General notes on device safety	6
	2.3 Meaning of the warning notes	6
3	Getting Started	7
Δ	Basic Knowledge	10
		10
	4.1 Identification system principles of operation4.2 Product description	10
	4.3 Control function	10
	4.4 Data integrity	10
	4.5 Bus connection	11
5	Technical Data	12
6	Installation	14
0		
	6.1 Processor installation	14
	6.2 Interface information/Connection diagrams	14
_	6.3 Changing the EEPROM	15
7	Bus Connection	16
	7.1 IP address	16
	7.2 AnyBus IPconfig	16
8	Parameterizing the Processor	18
	8.1 Basic knowledge	18
	8.2 Parameterizing	19
9	Device Function	24
	9.1 Function principle BIS C-6026	24
	9.2 Function indicators	31
	9.3 Examples	33
	Appendix	45

User Notes

11	Declaration of	c C Declaration of Conformity				
	Conformity and	CE Declaration of Conformity				
	user safety	This product was developed and produced in compliance with applicable European				
		standards and directives.				
		Process Control Equipment				
		COLUS LISTED Control No 3TLJ				
		File No E227256				
		S Note				
		i Note You can request a Declaration of Conformity separately.				
		For additional safety instructions, refer to the "Safety" section on page 6				
1.2	About this	This manual describes the processor for the BIS C-6026 identification system and guides you				
	Manual	through startup for immediate operation.				
1.3	Manual layout	The manual is designed so that each section builds on the previous sections.				
		chapter 2: Basic information regarding safety.				
		chapter 3: The main steps in installing the identification system.				
		chapter 4: An introduction into the material. chapter 5: Technical data for the processor.				
		chapter 6: Mechanical and electrical connections.				
		chapter 7: Logging the processor on to the network.				
		chapter 8: User-defined settings for the processor.				
		chapter 9: How the processor and host system work.				
1.4	Conventions	The following conventions are used in this manual.				
	F					
	Enumerations	Enumerations are represented as a list with bullet points.				
		– Entry 1, – Entry 2.				
	Actions	Action instructions are indicated by a preceding triangle. The result of an action is indicated by				
		an arrow. \Rightarrow Action instruction 1.				
		 Result of action. 				
		\Rightarrow Action instruction 2.				
	Notation	Numbers:				
	Notation	 Decimal numbers are represented without additional description (e.g. 123), 				
		- hexadecimal numbers are represented by appending the abbreviation hex (e.g. 00hex).				
		Parameters:				
		Parameters are written in italics, e.g. (CRC_16).				
		Directory paths:				
		Paths in which data are or will be saved/stored are represented in small caps				
		(e.g. Project:\Data Types\Userdefined).				
	Cross-references	Cross-references indicate where additional information on the topic can be found				
		(see Technical Data starting page 12).				

```
      1.5 Symbols
      Attention!
This symbol indicates a safety advisory which must be observed.

      Image: Note, tip
This symbol indicates general notes.

      Image: DC current

      Image: Function ground

      Image: ESD symbol
```

1.6 Abbreviations

ARP BIS CIP CRC DHCP EDS EEPROM	Address Resolution Protocol Balluff Identification System Common Industrial Protocol Cyclic Redundancy Code Dynamic Host Configuration Protocol Electronic Data Sheet Electrical Erasable and Programmable ROM
EMV	Electromagnetic Compatibility
MAC-ID	Media Access Control Identifier
ODVA	Open DeviceNet Vendor Association
PC	Personal Computer
RPI	Requested Packed Interval
PLC	Programmable Logic Controller
LPS	Limited Power Source Class 2

BIS C-6026 EtherNet/IP Processor

2 Safety

2.1	Intended use	The BIS C-6026 processor is a component of the BIS C identification system. Within the identi- fication system it is used for linking to a host computer (PLC, PC). It is intended only for use only in this way and in an industrial environment complying with Class A of the EMC Law. This description applies to processors in series BIS C-6026-034			
2.2	General notes on device safety	Installation and startup Installation and startup are to be carried out only by trained specialists. The manufacturer evokes the right to any warranty or liability claims resulting from unauthorized modifications or inproper use. When connecting the processor to an external controller, be sure to observe roper polarity for all connections including the power supply (see section "Installation" on age 14). The processor must be operated only using approved power supplies (see section Fechnical Data" on page 12).			
		Operation and testing It is the responsibility of the operator to ensure that the locally applicable safety regulations are maintained. In case of defects and faults in the identification system which cannot be remedied, take it out of operation and predect against unauthorized use.			
2.3	Meaning of the warning notes	Attention! The pictogram used with the word "Attention" warns of a possibly hazardous situation for the health of persons or equipment damage. Disregarding these warnings may result in personal injury or equipment damage.			

• Always observe the instructions given for avoiding this hazard.

Getting Started

Mechanical connection

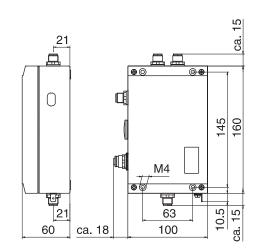


Fig. 1: Mechanical connection

 \Rightarrow Attach processor using (4) M4 screws.

Electrical connection

i Note

Route the ground wire to ground either directly or through an RC combination, depending on the system. When connecting to the Ethernet, be sure that the connector shield is perfectly

connected to the connector body.

Do not alter the factory setting for the DIL switches.

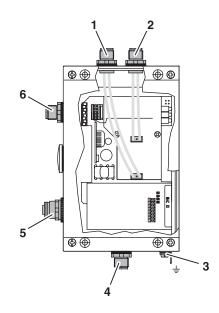
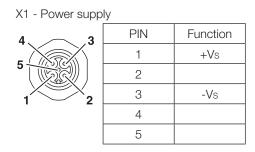




Fig. 2: Electrical connection

- 1 Head 2 Read/write head 2
- 2 Head 1 Read/write head 1
- 3 Function ground FE

- 4 X4 Service port
- 5 X3 Ethernet
- 6 X1 Power supply

Getting Started

51		
4	PIN	Function
5	1	TD+
)	2	RD+
	3	TD-
1	4	RD-

X4 - Service port

4 ~ 3	PIN	Function
	1	
	2	TxD
	3	GND
1 2	4	RxD

Bus connection

There are two ways of making the bus connection:

- Setting the IP address, subnet mask, gateway address and selecting DHCP using the application "Anybus IPconfig" on a Windows PC having an Ethernet network card.
- Using a DHCP server or BOOTP software.

Use the "Anybus IPconfig" program to make the bus connection. The "Anybus IPconfig" application is included on the BIS CD which comes with the processor.

- \Rightarrow Start "Anybus IPconfig".
 - ► The subnet is scanned for a connected BIS C-6026. The result of the scan is displayed in the "Anybus IPconfig" window.

Anybus IPconfig								
IP 🛆	SN	GW	DHCP	Version	Туре		MAC	
169.254.22.54	255.255.255.0	169.254.22.254	Off	1.04.1	ABIC-EIP		00-30-11-02-2	F-40
						Scar	n	Exit
						<u> </u>	<u></u>	Exit

 \Rightarrow Select the device from the scan list and double-click on it.

► The "Configure" window is opened.

3 Getting Started

Ethernet configura	tion			
IP address:	169 . 25	4 . 22	. 54	DHCP
Subnet mask:	255 . 25	5.255	. 0	C On C Off
Default gateway:	169 . 25	4 . 22	. 254	
Primary DNS:				
Secondary DNS:				
Hostname:				
Password:				Change password
New password:				
				Set Cancel

- $\Rightarrow\,$ Assign the IP address, subnet mask and gateway address.
- \Rightarrow Turn DHCP on/off.
- \Rightarrow Confirm your settings by clicking on Set.

Basic Knowledge

4.1	Identification system principles of operation	The BIS C identification system belongs to the category of non-contact systems having a read and write function. This enables you to not only read data contained in the data carriers, but also to write new data to them at any point in the process. The main components of the BIS C identification system are:
		 Processor, read/write heads, data carriers.
		 The main areas of application are: In production for controlling material flow (e.g. for variant-specific processes, workpiece transport using conveying systems, for collecting safety-related data), in tool coding and monitoring, in process equipment organization, in inventory systems for monitoring inventory movements, in transport and conveying technology, in waste management for quantity-dependent logging.
4.2	Product description	 BIS C-6026 processor: Metal enclosure, round connectors for making plug connections, capacity for two read/write heads, read/write heads are suitable for both dynamic and static operation, processor provides power for system components, Carrier signal from the read/write heads provides power for the data carrier.
4.3	Control function	The processor represents the link between the data carrier and the host control system. It manages two-way data transfer between the data carrier and read/write head and provides a buffer storage function. The processor writes data from the host signal to the data carrier through the read/write head, or reads data from the data carrier and makes the data available to the host system.
		Host systems may be: - A control computer (e.g. industrial PC), - a PLC.
		Dual bit-header: In order to ensure consistency of the transmitted data, the control bits in the first and last byte (bit-header) of the data buffer for each read/write head are sent and compared. If the two bit-headers are identical, then the data were fully updated and may be accepted. This means that the data for each read/write head are only valid if both bit-headers are identical. The host system must therefore also compare the bits in the bit-headers.
4.4	Data integrity	To ensure data integrity the data transfer between data carrier and processor must be monitored using a check procedure. The factory default setting in the processor is for double read with compare. A CRC_16 check may however be selected as an alternative. In CRC_16 checking a check code is written to the data carrier, which enables checking the data for validity at any time. Which procedure is used depends on how you are using the identification system.

Basic Knowledge

Δ

Mixed operation of the two check procedures is not possible!

The following table provides an overview of the advantages of each respective check procedure.

CRC_16 data check	Double read
Data integrity even during the non-active phase (data carrier outside the read/write head).	No user data bytes are lost for storing a check code.
Shorter read time – page is read just once.	Shorter read time – no check code is written.

4.5 Bus connection The processor and host system communicate using EtherNet/IP protocol.

EtherNet/IP is an industrial network standard. The IP in EtherNet/IP stands for "Industrial Protocol". EtherNet/IP uses the open communications protocol "Common Industrial Protocol" (CIP) on the application layer (as per the ISO/OSI reference model). EtherNet/IP is supported by the network organization "Open DeviceNet Vendor Association".

Use of a switch in full-duplex mode is necessary for collision-free data exchange.

5 Technical Data

Dimensions

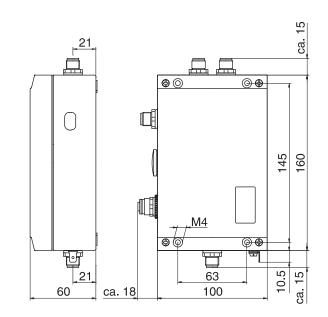


Fig. 3: Dimensions in mm

Mechanical data

Housing material	EN AC-AISi12 (a), DIN EN 1706
X1 – Input	V _s 24 V DC – 5-pin plug
X3 – Ethernet	M12 – 4-pin female, D-coded
X4 – Service port	RS 232 – 4-pin plug
Head 1, 2 (Read/write head connections)	4-pin plug
Enclosure rating	IP65 (with plugs connected)
Weight	950 g

Electrical data

Operating voltage V_s	24 V DC ±10 % LPS Class 2
Ripple	≤ 10 %
Current consumption	≤ 400 mA
Device interface	Ethernet
Service port	RS 232

5 Technical Data

Operating conditions

Ambient temperature	0 °C 60 °C		
EMV			
- EN 61000-4-2/3/4/5/6 - EN 55011	Severity level 4A/3A/3A/1B/3AGr. 1, Cl. A		
Shock/Vibration	EN 60068 Part 2-6/27/29/64/32		

Function indicators

BIS operating states	Ready CT1 Present/Operating CT2 Present/Operating	Green LED Green/yellow LED Green/yellow LED
Status EtherNet/IP	Data Rate (DR) Module Status (MS) Network Status (NS) Link/Activity (L/A)	LED LED LED LED

BIS C-6026 EtherNet/IP Processor

Installation

6.1 Processor installation

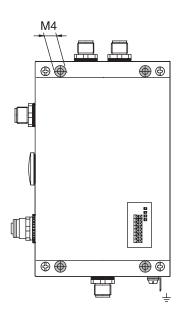


Fig. 4: Installation

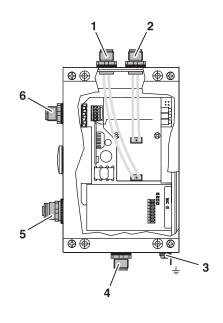
Note

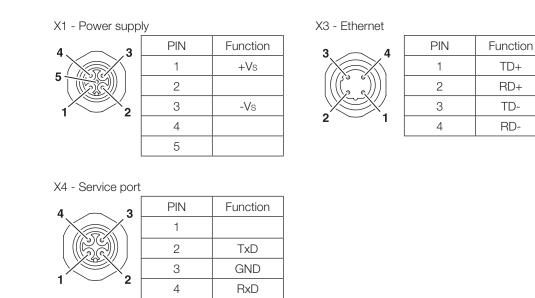
 \Rightarrow Attach processor using (4) M4 screws.

6.2 Interface information/ Connection diagrams

Route the ground wire to ground either directly or through an RC combination, depending on the system. When connecting to the Ethernet, be sure that the connector shield is perfectly connected to the connector body.

Do not alter the factory setting for the the DIL switches.




Fig. 5: Processor connections

- 1 Head 2 Read/write head 2
- 2 Head 1 Read/write head 1
- 3 Function ground FE

- 4 X4 Service port
- 5 X3 Ethernet
- 6 X1 Power supply

BIS C-6026 EtherNet/IP Processor

installation

6.3 Changing the EEPROM

Attention!

Components may be damaged by electrostatic discharge.Be sure to turn off power to the device before opening it.

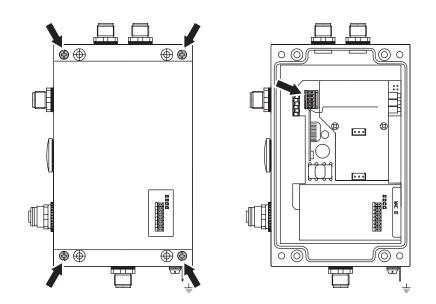


Fig. 6: Changing the EEPROM

- \Rightarrow Remove 4 screws from housing cover and remove cover.
- \Rightarrow Pull EEPROM from socket.
- \Rightarrow Insert new EEPROM into socket.
- \Rightarrow Replace cover and tighten 4 screws.

7 Bus Connection

7.1	IP address	The processor and host system communicate using EtherNet/IP protocol. Assigning a unique IP address associates the processor with a network.
		The processor can be incorporated into a network in various ways (DHCP, ARP). The MAC address is used as the basis for incorporating into the network. This hardware address is used only one time and uniquely identifies network devices such as the processor.
	DHCP	Dynamic Host Configuration Protocol (DHCP) allows a server to be used for dynamic assigning of an IP address. The hardware can be inserted into the network without having to perform any additional configuration. Only automatic obtaining (MAC address) of the IP address needs to be set.
7.2	AnyBus IPconfig	"AnyBus IPconfig" is software which allows the hardware to be addressed for the corresponding subnet prior to installation. In addition, assigning of the IP address through a DHCP server or BOOTP program can be activated (DHCP on) or deactivated (DHCP off).
		The "Anybus IPconfig" application is included on the BIS CD which comes with the processor.
		 ⇒ Start "Anybus IPconfig". ► The subnet is scanned for a connected BIS C-6026. The result of the scan is displayed in the "Anybus IPconfig" window.

Anybus IPconfig									
IP 2	Δ	SN	GW	DHCP	Version	Туре		MAC	
169.254.22.54		255.255.255.0	169.254.22.254	Off	1.04.1	ABIC-EIP		00-30-11-02	2-2F-40
							Scar	<u>1</u>	Exit

 \Rightarrow Select the device from the scan list and double-click on it.

► The "Configure" window is opened.

7 **Bus Connection**

Ethernet configura		DUCD
P address:	169 . 254 . 22 . 54	
		O On
Subnet mask:	255 . 255 . 255 . 0	⊙ Off
	169 . 254 . 22 . 254	
Default gateway:	163 . 234 . 22 . 234	
rimary DNS:		
Innery Divo.		
econdary DNS:		
-		
lostname:		
Password:		🔲 Change password
lew password:		

- $\Rightarrow\,$ Assign the IP address, subnet mask and gateway address. $\Rightarrow\,$ Turn DHCP on/off.
- \Rightarrow Confirm your settings by clicking on Set.

8.1 Basic knowledge

CRC check

The CRC check is a procedure for determining a test value for data so as to detect errors in transferring data. If CRC check is activated, an error message is output when a CRC error is detected.

Initializing

To be able to use the CRC check, the data carriers must be initialized. The data carriers are initialized in the output buffer using the command 12hex If the data carrier does not contain the correct CRC, then the processor sets an error message in the input buffer (see Example 10 on page 43).

As shipped from the factory, data carriers may be immediately written a checksum, since all the data are set to 0.

Error message

- If an error message is the result of a failed write job, then the data carrier must be reinitialized before it can be used again.
- If an error message is not the result of a failed write job, then one or more of the memory cells in the data carrier are defective. This means the data carrier must be replaced.

Checksum

The checksum is written to the data carrier as a 2-byte information per block. 2 bytes per block are lost for the data transmission. This leaves 30 or 62 bytes remaining depending on the block size of the data carrier. The usable number of bytes can be determined from the following table.

Data carrier type	Usable bytes
128 bytes	120 bytes
256 bytes	240 bytes
511 bytes	450 bytes
1023 bytes	930 bytes
2047 bytes	1922 bytes
2048 bytes	1984 bytes
8192 bytes	7936 bytes

Simultaneous data transmission

Reading

The processor reads the data from the data carrier directly into the input buffer. As soon as the buffer is filled, the Toggle-Bit Out (TO-Bit) is inverted to indicate data ready to the host system. The system inverts the Toggle-Bit In (TI-Bit) to indicate that it is ready to receive, and data read in the meantime are transmitted to the input buffer. This repeats itself until the desired data have been read from the data carrier. After the read procedure is finished, the processor sets the Job End bit (AE-bit) and transmits the remaining data to the input buffer (see example 2 on page 34).

Writing

The processor begins to write data to the data carrier as soon as it has received the first data from the host system. Once all the data have been written to the data carrier, the AE-bit is set. BIS C-6026 EtherNet/IP Processor

B Parameterizing the Processor

	Dynamic mode	host system and stores it rega	rdless of w	ated, the processor accepts the read/write job from the hether there is a data carrier in the active zone of the ers the active zone of the read/write head, the stored
	Auto-Read	Address 00 _{hex} are automatical necessary. This allows small d If Auto-Read (Extra) is activate	ly read into ata amount d, then the ouffer and t	e of the read/write head, 14 bytes beginning with the input buffer. No separate read command is ts stored beginning at Address 00 _{hex} to be read faster. 14 bytes starting at a specified address are read from hen the Codetag Present bit (CP-bit) is set. The start (Extra_Adr).
8.2	Parameterizing	There are two different ways to using the EDS file.	o set param	neters. Parameterizing from an application program or
	Basics	The parameters for operating Explicit messages are used to		sor are stored in the BIS Config Object (class 64hex).
		RSLogix 5000 written for the L device programming is include "Example for parameterizing w EDS file	or EtherNet _ogix 5000 ed on the B /ith applica	/IP device parameterizing is the Windows program controller of Rockwell Automation. An example for IS-CD. For additional information see section
	Parameters	CRC_16	class: instance: attribute:	
		Factory setting:	Disable	(= 0)
		Data validity is checked using	g double rea	ad.
		Other settings:	Enable	(= 1)
		Data validity is ensured using	CRC chec	k.
		Simultaneous	class: instance: attribute:	64hex 01hex 02hex
		Factory setting:	Disable	(= 0)
		Read/write jobs and data tran	nsmission a	are run in sequence.
		Other settings:	Enable	(= 1)
		Read/write jobs and data trai	nsmission a	are run simultaneously.

Dynamic1	class: instance: attribute:	64hex 01hex 03hex
Factory setting:	Disable	(= 0)
Read/write head 1 is in s		ad/write command from the controller is carried out
Other settings:	Enable	(= 1)
Read/Write Head 1 is in	dynamic mode.	
Dynamic2	class: instance: attribute:	
Factory setting:	Disable	(= 0)
		ad/write command from the controller is carried out a zone of Read/Write Head 2.
Other settings:	Enable	(= 1)
Read/Write Head 2 is in	dynamic mode.	
Extra1	class: instance: attribute:	
Factory setting:	Disable	(= 0)
CT Present data if there	is a data carrier	in the active zone of Read/Write Head 1.
Other settings:	Enable	(= 1)
The Auto-Read function	is active.	
Extra2	class: instance: attribute:	64hex 01hex 06hex
Factory setting:	Disable	(= O)
CT Present data if there	is a data carrier	in the active zone of Read/Write Head 2.
Other settings:	Enable	(= 1)
The Auto-Read function	is active.	
Extra_Adr1	class: instance: attribute:	64 _{hex} 01 _{hex} 07 _{hex}

 Factory setting:
 0

 Other settings:
 1...2047

 Specifies the start address (Auto-Read) begins

Specifies the start address (Auto-Read) beginning at which the data carrier is read when a data carrier enters the active zone of Read/Write Head 1.

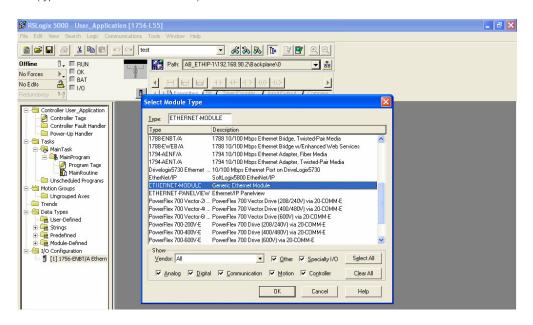
Extra_Adr2	class: instance: attribute:	-
Factory setting:	0	
Other settings:	12047	

Specifies the start address (Auto-Read) beginning at which the data carrier is read when a data carrier enters the active zone of Read/Write Head 2.

Example of parameterizing using the application program This example shows how the example project included on the BIS-CD can be used with the RSLogix 5000 software for a user project.

Note the following procedure:

- 1. Add the BIS C-6026 to a user project.
- 2. Import the example project into a new project.
- 3. Copy user-defined data type from the example project to the user project.
- 4. Create a sub-routine in the user project.
- 5. Set invoking of the sub-routine in the main program of the user program.


To run the example the files stored on the BIS-CD must by copied to a local directory.

Information about the software, installation, creating projects and working in projects can be found in the manual for the RSLogix 5000 manual.

1. Add the processor

- \Rightarrow Open user project.
- ⇒ Under I/O-CONFIGURATION\[1] 1756-ENBT/A ETHERNETIP create a new module. (type: Generic Ethernet Module).

\Rightarrow	Set module properties:		
	Name: Communication format: IP address:	0	BISC_1 Data SINT 192.168.90.3
	IP address:	e.g.	192.168.90.3

 \Rightarrow Set the connection parameters as follows:

		Instance	Size
Connection parameters	Input:	100	32 bytes
	Output:	150	32 bytse
	Configuration:	1	0

Note i

"Configuration" is not supported. Therefore the values are set to 1 and 0.

Module Properties - EthernetIP (ETHERNET Type: ETHERNET-MODULE Generic Ethern Vendor: Allen-Bradley		1			
Parent: EthernetIP	с : р				
Name: BIS_C Description:	Connection Par	Assembly Instance: 100	Size:	(8-bit)	
	Output:	150	32	* (8-bit)	
Comm Format: Data - SINT	Configuration:	1	0	÷ (8-bit)	
IP Address: 192 . 168 . 90 . 3 Host Name:	Status Input: Status Output		1		
Cancel	k Next>	Finis	h>>	Help	

⇒ Save settings by clicking on "OK" and confirm the remaining dialog fields until the module has been successfully created.

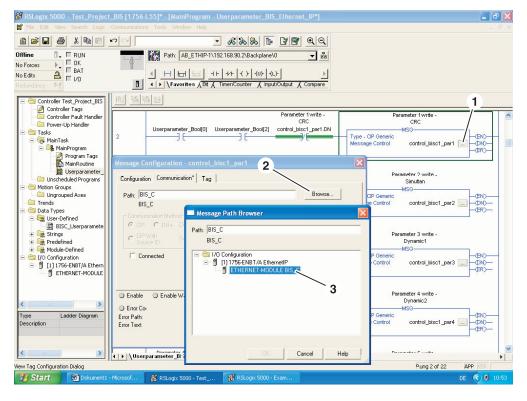
Note

When confirming the dialog fields, be sure that the Requested Packed Interval (RPI) \geq 10 ms is set.

2. Import example project

Only one project per window can be opened in RSLogix 5000.

 \Rightarrow Open a new project.


- ⇒ Import the example project "Example_Project_Param_BIS_C.L5K" from the local directory to the project (File\Open).
- ⇒ Save example project in *.ACD format (File\Save as) File name is freely selectable.

3. Copy user-defined data type

- \Rightarrow Under Data Types\User defined in the example project copy "BISC_Userparameters".
- \Rightarrow Under DATA TYPES\USER DEFINED in the example project paste "BISC_Userparameters".

4. Create a sub-routine in the user project

- ⇒ Under Tasks\MainTask\MainPRogram in the user project create a new routing with the name "Userparameters_BIS_Ethernet_IP".
- \Rightarrow Double-click to open the new routine.
- \Rightarrow Right-click on "Import flow path" from the context menu.
- ⇒ Import the file "Example_Project_Rung_BIS_C.L5X" from the local directory to the user project.
- \Rightarrow Reconfigure the communication paths for all messages see screenshot for sequence.

5. Set invoking of the sub-routine

- ⇒ Under Tasks\MainTask\MainProgram select MainRoutine.
- \Rightarrow In the MainRoutine set "Userparameter_Bool (0)" to high.
 - ► Sub-routine is activated.

9.1 Function principle BIS C-6026
 When writing the buffer, the transmitted data from the previous cycle are overwritten. Unwritten bytes are not deleted and retain their data content.

The buffer size of the overall buffer is 32 bytes. 16 bytes are available for each read/write head.

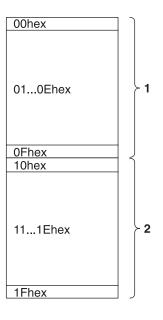


Fig. 7: Total buffer Read/Write Heads 1 and 2

1 Read/Write Head 1

2 Read/Write Head 2

Only 14 bytes per read/write head are available for data exchange, since the first and last bytes in the respective data buffer are used for control and for status messages.

The output buffer is used to transmit the identification system commands and the data to be written to the data carrier.

Bit no. Subaddress	7	6	5	4	3	2	1	0
00 _{hex} = Bit header	СТ	TI				GR		AV
01hex		Command				or	Da	ata
02hex	Stare	Stared address (Low Byte) or program no.				or	Data	
03hex		Start address (High Byte)				or	Da	ata
04hex		No. of bytes (Low Byte)				or	Da	ata
05hex		No. of bytes (High Byte)				or	Da	ata
06hex	Data							
	Data							
0F _{hex} = Bit header	СТ	TI				GR		AV

Output buffer

Allocation and explanation

Subaddress	Bit name	Meaning	Function description
00hex/0Fhex	CT	Data carrier type	Data carrier type is selected. 0 = 32 byte block size 1 = 64 byte block size
	ΤI	Toggle-Bit In	Controller is ready to receive additional data (read job).
GI	GR	Base state	Identification goes into base state for the respective read/write head. Any pending job is cancelled.
	AV	Job	A job is pending for the respective read/write head.

Subaddress	Meaning	Function description
Olhex	Command O0hex 01hex 02hex 06hex 12hex 21hex 22hex 32hex	No command. Read data carrier. Write to data carrier. Save program for "Mixed data access" in EEPROM. Initialize CRC_16 data check. Read data carrier as per a program for "Mixed data access". Write to data carrier as per a program for "Mixed data access". Write to data access". Write a constant value to data carrier. This command can also be used as a clear command. It saves time, since only one byte needs to be sent for the entire write range.
	or Data	Transmitting data written to the data carrier.
	or Program data	Transmitting program data written to the EEPROM.

02hex	Start address (Low Byte)	Address starting at which reading or writing should commence (address range from 0 to 255 is covered).
	or Program No.	Program No. to be stored for "Mixed Data Access" in conjunction with command 06hex (value range 01hex to 0Ahex).
	or Program No.	Program No. to be run for "Mixed Data Access" in con- junction with command 21hex or 22hex (value range 01hex to 0Ahex).
	or Data	Transmitting data written to the data carrier.
	or Program data	Transmitting program data written to the EEPROM.

Subaddress	Meaning	Function description		
03hex	Start address (High Byte)	Address starting at which reading or writing should commence (address range from 256 to 8191 is covered).		
	or Data	Transmitting data written to the data carrier.		
or Program data		Transmitting program data written to the EEPROM.		
04 _{hex}	No. of bytes (Low Byte)	No. of bytes (1 to 255 bytes) to read or write beginning at the start address (Low Byte).		
	or Data	Transmit the data which are written to the data carrier.		
	or Program data	Transmitting program data written to the EEPROM.		

05hex	No. of bytes (High Byte)	No. of bytes (256 to 8192 bytes) to read or write commencing with the start address (High Byte).		
	or Data	Transmitting data written to the data carrier.		
	or Program data	Transmitting program data written to the EEPROM.		

06hex	Data	Transmitting the data written to the data carrier.
	or Program data	Transmit the program data which are written to the EEPROM.

 Data	Transmitting the data written to the data carrier.
or Program data	Transmit the program data which are written to the EEPROM.

Input buffer

The input buffer is used to transmit the data read by the identification system, the identifiers and error codes to the host system.

Bit no. Subaddress	7	6	5	4	3	2	1	0
00 _{hex} = Bit header	BB	HF	ТО		AF	AE	AA	СР
01hex	Error code or I				Data			
02hex				Da	ata			
				Da	ata			
0F _{hex} = Bit header	BB	HF	ТО		AF	AE	AA	CP

Allocation and explanation

Subaddress	Bit name	Meaning	Function description
00hex/0Fhex	x/0Fhex BB Ready		Identification system is ready.
	HF	Head error	Cable break on read/write head or no read/ write head connected.
	то	Toggle-Bit Out	Read procedure: Identification system has additional data ready. Write procedure: Identification system can accept additional data.
AF		Job error	Error in processing the job, or job cancelled.
	AE	Job end	Confirmation – Job ended without error.
	AA	Job start	Confirmation – Job was recognized and started.
	CP	Codetag Present	There is a data carrier in the active zone of the read/write head.

Subaddress	Meaning	Function description
01hex	Error code 01 _{hex} 02 _{hex}	Error number valid only with AF-bit! Job cannot be carried out becoffe there is no data carrier in the active zone of the read/write head. Read error.
	03hex	Data carrier was removed from the active zone of the read/ write head during reading.
	04hex	Write error.
	05hex	Data carrier was removed from the active zone of the read/ write head during writing.
	06hex	Memory access error.
	07 _{hex}	Invalid or no command for set AV-bit or number of bytes is 00 _{hex.}
	09hex	Cable break on read/write head or no read/write head connected.
	OChex	EEPROM cannot be read or programmed.
	ODhex	Communication fault with data carrier.
	OEhex	CRC for read data and CRC for data carrier do not agree. 1 st and 2 nd bit header are not identical. The 2 nd bit header
	OFhex	must be operated.
	or Data	Transmit data which were read from the data carrier.
02hex	Data	Transmit data which were read from the data carrier.
	Data	Transmit data which were read from the data carrier.

Communication	Communication between the host system and the processor is defined by a sequence protocol. A control bit in the output and input buffer is used to implement communication between the host system and the processor.					
	 Basic sequence Controller sends command in output buffer to processor with set AV bit. The AV bit tells the processor that a job is beginning and the transmitted data are valid. Processor takes the job and confirms the job by setting the AA bit in the input buffer. If additional data need to be exchanged for the job, readiness for additional exchange is indicated by inverting the Toggle-Bits TI and TO. The processor has correctly executed the job and set the AE bit in the input buffer. The controller has received all data. The AV bit in the output buffer is reset. The processor resets all the control bits (AA, AE) in the input buffer which were set during the job. The processor is ready for the next job. 					
Mixed data access	By carrying out read/write programs it is possible to write data to various address ranges on the data carrier or read data which are contained in various address ranges on the data carrier. This function is referred to as "Mixed data access". The read/write programs are stored in the processor's EEPROM. 10 programs with up to 25 instructions can be stored. Each program instruction contains the information about the start address and number of bytes. The maximum allowable amount of data that can be transmitted is 2 kB.					

Command O6hex in the output buffer sends the program to the processor. Saving a program is considered a job. All 25 instructions and two additional bytes with FFhexFFhex as an end delimiter must always be transmitted. This means that 104 bytes per program, including the command and program number, are transmitted (see example 7 on page 40).

Program structure example:

Program structure	Subaddress	Value	Value range
Command	01hex	06hex	
1. Program set			
Program number	02hex	01hex	01 hex to 0Ahex
1. Data record			
Start address Low Byte	03hex		
Start address High Byte	04 _{hex}		
Number of bytes Low Byte	05hex		
Number of bytes High Byte	06hex		
2. Data record			
25. Data record			
Start address Low Byte	03hex		
Start address High Byte	04hex		
Number of bytes Low Byte	05hex		
Number of bytes High Byte	06hex		
End delimiter	FFhexFFhex		

Running programs:

The programs stores in the EEPROM may be used for reading data records from data carriers as well as for writing data records to a data carrier. The command 21_{hex} (read) or 22_{hex} (write) in the output buffer is used to specify reading or writing (see example 8 on page 41 and example 9 on page 42).

Read/write times

Note

The times indicated below commence as soon as the data carrier is recognized. Otherwise 45 ms must be added to allow for energy to be generated before the data carrier is recognized.

Read times in static mode (double reading for data integrity)

32-byte block size data carrier		64-byte block size data carrier	
No. of bytes	Read times [ms]	No. of bytes	Read times [ms]
0 to 31	110	0 to 63	220
each additional 32 bytes	120	each additional 64 bytes	230
0 to 255	950	0 to 2047	7350

Write times in static mode (double reading for data integrity)

	32-byte block size data carrier	
No. of bytes Write times [m		Write times [ms]
	0 to 31	110 + n * 10
	32 Byte	Y * 120 + n * 10

64-byte block size data carrier		
No. of bytes Write times [ms]		
0 to 63	220 + n * 10	
64 Byte	Y * 230 + n * 10	

n = No. of contiguous bytes to write

y = No. of blocks to process

Example:

Write 17 bytes starting at Address 187. A data carrier with 32-byte block size is used. Blocks 5 and 6 need to be processed, since the start address 187 is located in Block 5 and the end address 203 is in Block 6.

Write time = 2 * 120 + 17 * 10 = 410 ms

Read times in dynamic mode, first block (double reading for data integrity)

32-byte block size data carrier		
No. of bytes Read times [ms]		
0 to 3 14		
each additional byte	3.5	
0 to 31 112		

	64-byte block size data carrier		
3]	No. of bytes	Read times [ms]	
	0 to 3	14	
	each additional byte	3.5	
	0 to 63	224	

Formula: Read time = (m+1) * 3.5m = highest address to be read

Example:

Read 11 bytes beginning at Address 9. This means the highest address to be read is 19.

Read time = (19+1) * 3.5 = 70 ms

9.2 Function indicators

The operating states of the identification system, the Ethernet connection and the EtherNet/IP connection are indicated by means of LED's.

Overview of indicators

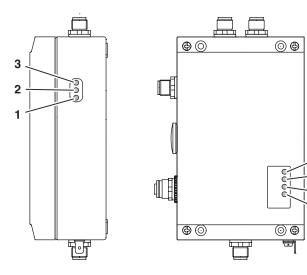


Fig. 8: Function indicators

- Identification system
- 1 CT2 Present/operating
- 2 CT1 Present/operating
- 3 Ready

Ethernet and EtherNet/IP

4 5

6 7

- 4 Data Rate (DR)
- 5 Module Status (MS)
- 6 Network Status (NS)
- 7 Link/Activity (L/A)

Power-up

During power-up all LED's for the Ethernet and EtherNet/IP connection are tested as described in the following table.

LED name	LED sequence							
Data Rate (DR)		off green red			red			
Module Status (MS)	green	en red green						
Network Status (NS)	0	off green r		red		0	off	
Link/Activity (L/A)	C		ff		green	red	0	ff

Diagnostics Identification system

luei	iunca	uon sj	JSICIII

Status LED	Meaning
Ready	
green	Operating voltage present; no hardware error

CT1 Present/Operating		
green Data carrier ready to read/write at Read/Write Head 1		
yellow	Read/write job being processed at Read/Write Head 1	
yellow flashing	Cable break on Read/Write Head 1 or Read/Write Head 1 not connected	
off	No data carrier in the active zone of the Read/Write Head 1	

Status LED	Meaning	
CT2 Present/Operating		
green	Data carrier ready to read/write at Read/Write Head 2	
yellow	Read/write job being processed at Read/Write Head 2	
yellow flashing	Cable break on Read/Write Head 2 or Read/Write Head 2 not connected	
off	No data carrier in the active zone of the Read/Write Head 2	

Ethernet- and EtherNet/IP connection

Status LED	Meaning
Data Rate	
off	Transmission rate 10 Mbit
green	Transmission rate 100 Mbit
red	-

Module Status	
off	No power to module
green	Device ready
green flashing	Module configuration missing or incorrect
red	Non-clearable error
red flashing	Clearable error

Network Status		
off	No voltage or no IP address	
green	Device has at least one EtherNet/IP connection	
green flashing	Device has no EtherNet/IP connection	
red	An IP address is duplicated	
red flashing	One or more EtherNet/IP connections has timed out	

Link/Activity		
off	No power	
green	Device is connected to Ethernet	
green flashing	RX/TX activity	
red	-	

```
9.3 Examples
```

1. Read 30 bytes on Head 1, start address 10 (data carrier 32-byte block size)

Controller

Identification system

- 1. Process output buffer (note sequence):
- 2. Process input buffer (note sequence):

(note se	quence):	 (note sequence):				
01hex	Command 01hex	00hex /0Fhex	Set AA bit			
02hex	Start address 0Ahex	010Ehex	Enter first 14 bytes			
03hex	Start address 00hex	00hex /0Fhex	Set AE-Bit			
04hex	No. of bytes 1Ehex					
05hex	No. of bytes 00hex					
00hex /0Fhex	Set AV bit, CT bit to 0					
3. Process	input buffer:	4. Process	input buffer:			
010Ehex	Copy first 14 bytes	 010Ehex	Enter second 14 bytes			
Process	output buffer:	 00hex /0Fhex	Invert TO-Bit			
00hex /0Fhex	Invert TI-Bit					
5. Process	input buffer:	6. Process	input buffer:			
010Ehex	Copy second 14 bytes	 0102hex	Enter last bytes			
Process	output buffer:	 00hex /0Fhex	Invert TO-Bit			
00hex /0Fhex	Invert TI-Bit					
7. Process	input buffer:	8. Process	input buffer:			
0102hex	Copy last bytes	 00hex /0Fhex	Reset AA and AE-Bit			
	output buffer:					
00hex /0Fhex	Reset AV-Bit					
OUTIEX / UT THEX	TIESELAV-DIL					

2. Read 30 bytes on Head 1, start address 10, simultaneous data transmission (data carrier 32-byte block size)

While the read job is being carried out and as soon as sufficient data have been read for filling the input buffer of Read/Write Head 1, these data are sent to the input buffer. The AE bit is not set until the "Read" operation has been finished by the processor.

The reply "Job End" (AE-Bit) is reliably set no later than when the last data are sent. The actual time depends on the requested amount of data and the time response of the controller. In the example the italicized "*Set AE-Bit*" draws your attention to this fact.

Controller

Identification system

1. Process output buffer (note sequence):			2. Process input buffer (note sequence):			
01hex	Command 01hex			x /0Fhex	Set AA bit	
02hex	Start address 0Ahex		01	.0Ehex	Enter first 14 bytes	
03hex	Start address 00hex		00he	x /0Fhex	Invert TO-Bit	
04hex	No. of bytes 1Ehex		00he	x /0Fhex	Set AE-Bit	
05hex	No. of bytes 00hex					
00hex /0Fhex	Set AV bit, CT bit to 0					
3. Process i	input buffer:		4.	Process ir	nput buffer:	
010Ehex	Copy first 14 bytes	juunnun		.0Ehex	Enter second 14 bytes	
Process	output buffer:	_	00he	x /0Fhex	Invert TO-Bit	
00hex /0Fhex	Invert TI-Bit]	00he	x /0Fhex	Set AE-Bit	
5. Process i	5. Process input buffer: 6. Process input buffer:					
010Ehex	Copy second 14 bytes			.02hex	Enter last bytes	
Process	output buffer:	_	00he	x /0Fhex	Invert TO-Bit	
00hex /0Fhex	Invert TI-Bit]	00he	x /0Fhex	Set AE-Bit	
7. Process input buffer: 8. Process input buffer:						
				x /0Fhex	Reset AA and AE-Bit	
	Copy last bytes		UUhe	x /UFhex	NESELAA ANU AE-DIL	
	output buffer:	1				
00hex /0Fhex	Reset AV-Bit					

34 | BALLUFF

3. Read 30 bytes on Head 1, start address 10, with read error (64-block size data carrier)

Controller

Note If an error occurs, the AF-Bit with corresponding error number is provided instead of

Identification system

1. Process output buffer (note sequence):

2. Process input buffer (note sequence): If error occurs immediately!

	~	nununu -				
01hex	Command 01hex		00hex /0Fhex	Set AA bit		
02hex	Start address 0Ahex		01hex	Enter error number		
03hex	Start address 00hex		00hex /0Fhex	Set AF-Bit		
04 _{hex}	No. of bytes 1Ehex					
05hex	No. of bytes 00hex					
00hex /0Fhex	Set AV bit, CT bit to 1					
 Process i 	04hex No. of bytes 1Ehex 05hex No. of bytes 00hex 00hex /0Fhex Set AV bit, CT bit to 1 3. Process input buffer: 4. Process input buffer:					
01hex	Copy error number		00hex /0Fhex	Reset AA and AF-Bit		
		l	COTIEX / OF THEX			
	output buffer:	1				
00hex /0Fhex	Reset AV-Bit					

4. Read 30 bytes on Head 1, start address 10, simultaneous data transmission, with read error (64-block size data carrier)

Controller

01hex

Identification system

- 1. Process output buffer (note sequence):
- 2. Process input buffer (note sequence): If error occurs immediately!

Set AA bit

Set AF-Bit

Enter error number

01 _{hex}	Command 01hex		ex /0Fhex
02hex	Start address 0Ahex	01he	X
03hex	Start address 00hex	00he	ex /0Fhex
04 _{hex}	No. of bytes 1Ehex		
05hex	No. of bytes 00hex		
00hex /0Fhex	Set AV bit, CT bit to 1		
3. Process i	nput buffer:	4.	Process

 Process ir	nput buffer:		
 00hex /0Fhex	Reset AA and AF-Bit		

Copy error number	00hex /0Fhex

Process of		
00hex /0Fhex	Reset AV-Bit	

5. Read 30 bytes on Head 1, simultaneous data transmission, start address 10, with read error (64-block size data carrier)

Note

If an error occurs after data have begun to be sent, the AF-Bit with corresponding error number is provided instead of the AE-Bit. The error message AF is dominant. Which data are faulty cannot be specified. Setting the AF-Bit cancels the job and declares it as ended.

Controller

Identification system

1. Process output buffer 2. Process input buffer (note sequence): (note sequence): 01hex Command 01hex 00hex /0Fhex Set AA bit 02hex Start address OAhex 01...0Ehex Enter first 14 bytes 00hex /0Fhex 03hex Start address 00hex Invert TO-Bit 04hex No. of bytes 1Ehex 05hex No. of bytes 00hex 00hex /0Fhex Set AV bit, CT bit to 1 З. Process input buffer: 4. Process input buffer: If error has occurred! 01...0Ehex Copy first 14 bytes 01hex Enter error number Process output buffer: 00hex /0Fhex Set AF-Bit 00hex /0Fhex Invert TI-Bit Process input buffer: 6. Process input buffer: 5. 01...0Ehex Copy error number 00hex /0Fhex Reset AA and AF-Bit Process output buffer: 00hex /0Fhex Reset AV-Bit

6. Write 30 bytes on Head 1, start address 20 (32-byte block size data carrier)

Controller

Identification system

1. Process (note sec	output buffer quence):		2.	Process i (note seq	nput buffer uence):
01hex	Command 02hex			nex /0Fhex	Set AA bit, invert TO-Bit
02hex	Start address 14hex				
03hex	Start address 00hex				
04hex	No. of bytes 1Ehex				
05hex	No. of bytes 00hex				
00hex /0Fhex	Set AV bit, CT bit to 0				
3. Process	output buffer:		4.	Process of	output buffer:
010Ehex	Enter first 14 bytes		01.	0Ehex	Copy first 14 bytes
00hex /0Fhex	Invert TI-Bit			Process i	nput buffer:
			00ł	nex /0Fhex	Invert TO-Bit
	output buffer:		<u>6.</u>		output buffer:
010Ehex	Enter second 14 bytes	_	01.	0Ehex	Copy second 14 bytes
00hex /0Fhex	Invert TI-Bit				nput buffer:
				nex /0Fhex	Invert TO-Bit
7. Process	output buffer:		8.	Process	output buffer:
0102hex	1			02hex	
0102hex 00hex /0Fhex	Enter last 2 bytes Invert TI-Bit	_			Copy last 2 bytes
			00	nex /0Fhex	Set AE-Bit
0	output buffor				1
[output buffer:				
00hex /0Fhex	Reset AV-Bit		UUł	nex /0Fhex	Reset AA and AE-Bit

7. Write 1000 bytes on Head 1, start address 80 (64-byte block size data carrier)

Controller

Identification system

1. Process output buffer 2. Process input buffer (note sequence): (note sequence): 01hex Command 32hex 00hex /0Fhex Set AA bit, invert TO-Bit 02hex Start address 50hex 03hex Start address 00hex 04hex No. of bytes E8hex 05hex No. of bytes 03hex Set AV bit, CT bit to 0 00hex /0Fhex Process output buffer: 4. З. Process output buffer: 01hex Enter constant value 01hex Copy constant value 00hex /0Fhex Invert TI-Bit Process input buffer: 00hex /0Fhex Set AE-Bit 5. Process output buffer: 6. Process input buffer: 00hex /0Fhex Reset AV-Bit 00hex /0Fhex Reset AA and AE-Bit

8. Mixed data access - Save program (3 data records)

1 st data record	Start address	5	No. of bytes	7
2 nd data record	Start address	75	No. of bytes	3
3 rd data record	Start address	312	No. of bytes	17
Total number of bytes exchanged in the operation:				

Total number of bytes exchanged in the operation:

All 104 bytes are written for this programming.

Controller

00hex /0Fhex

Reset AV-Bit

Identification system

1. Process (note sec	output buffer juence):	- 1111111111	(note seq	nput buffer uence):
01hex	Command 06hex		00hex /0Fhex	Set AA bit, invert TO-Bit
02hex	Program number 01hex]		
00hex /0Fhex	Set CT-Bit to 0 or 1, Set AV bit			
		1111111		

3. Process	output buffer:		4.	Process i	nput buffer:
01hex	1 st start address	05hex		ex /0Fhex	Invert TO-Bit
02hex		00hex			
03hex	1 st no. of bytes	07hex			
04 _{hex}		00hex			
05hex	2 nd start address	4Bhex			
06hex		00hex			
07 _{hex}	2 nd no. of bytes	03hex			
08hex		00hex			
09hex	3 rd start address	38hex			
0Ahex		01hex			
0Bhex	3 rd no. of bytes	11 _{hex}			
0Chex		00hex			
0Dhex /0Ehex	End delimiter FFhex	FFhex			
00hex /0Fhex	Invert TI-Bit				
E Dragogo			C	Durana	pout buffor

5. Process of	output buffer:		Process ir	nput buffer:
01hex0Ehex	(not used) FFhexFFhex		x/0Fhex	Invert TO-Bit
00hex /0Fhex	Invert TI-Bit			

17. Process output buffer:	18. Process input buffer:
01hex0Ehex (not used) FFhexFFhe	
00hex /0Fhex Invert TI-Bit	
19. Process output buffer:	20. Process input buffer:

00hex /0Fhex

Reset AA and AE-Bit

40	BALLUFF
----	---------

9. Mixed data access - Reading the data carrier with Program No. 1 (32-byte block size data carrier)

Dynamic mode is turned off while the program is running.

A total of 27 bytes are exchanged.

Controller

Identification system

Process input buffer

1. Process output buffer (note sequence):

(note seq	uence):	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(note seq	uence):
01 _{hex}	Command 21hex		00hex /0Fhex	Set AA bit
02hex	Start address 01hex		010Ehex	Enter first 14 bytes
00hex /0Fhex	Set AV bit, CT bit to 0		00hex /0Fhex	Set AE-Bit
		MIMMIN		
		IIIIII		

2.

		WIIIIII		
3. Process i	nput buffer:			nput buffer:
010Ehex	Copy first 14 bytes		010Dhex	Enter last bytes
Process	output buffer:	_	00hex /0Fhex	Invert TO-Bit
00hex /0Fhex	Invert TI-Bit			
7. Process i	nput buffer:		8. Process in	nput buffer:
010Dhex	Copy last bytes		00hex /0Fhex	Reset AA and AE-Bit
Process	output buffer:	_		
00hex /0Fhex	Reset AV-Bit			

10. Mixed data access – Writing the data carrier with Program No. 1 (32-byte block size data carrier)

Dynamic mode is turned off while the program is running.

A total of 27 bytes are exchanged.

Controller

Identification system

1. Process output buffer 2. Process input buffer (note sequence): (note sequence): 01hex Command 22hex 00hex / 0Fhex Set AA-Bit Invert TO-Bit 02hex Program number 01hex 00hex / 0Fhex Set AV-Bit, CT-VBit to 0 Process output buffer: 4. Process output buffer: З. 01...0Ehex Enter first 14 bytes 01...0Ehex Enter first 14 bytes 00hex / 0Fhex Invert TI-Bit Process input buffer: 00hex / 0Fhex Invert TO-Bit 5. Process output buffer: 6. Process output buffer: 01...0Dhex Enter last bytes 00hex / 0Dhex Copy last bytes 00hex / 0Fhex Invert TI-Bit Process input buffer: 00hex / 0Fhex Set AE-Bit

		MMMMM		
7. Process	output buffer:		Process	input buffer:
00hex / 0Fhex	Reset AV-Bit		x / 0Fhex	Reset AA-Bit
		_		Reset AE-Bit

11. Initialize data carrier for CRC

CRC initializing is handled like a write command. The start address and number of bytes must correspond to the maximum used data quantity.

In the example the complete memory range of a 128-byte data carrier is used. The block size of the data carrier is 32 bytes. 120 bytes of the data carrier are available as user bytes, since 2 bytes are required per block for the CRC.

Controller

Identification system

	output buffer quence):		2.	Process ii (note seq	nput buffer uence):
01hex	Command 12hex		00h	ex /0Fhex	Set AA bit, invert TO-Bit
02hex	Start address 00hex				
03hex	Start address 00hex				
04hex	No. of bytes 78hex				
05hex	No. of bytes 00hex				
00hex /0Fhex	Set AV bit, CT bit to 0				
				-	
	output buffer:				butput buffer:
010Ehex	Enter first 14 bytes	_	01.	0Ehex	Copy first 14 bytes
00hex /0Fhex	Invert TI-Bit				nput buffer:
				ex /0Fhex	Invert TO-Bit
5. Process	output buffer:		6.	Process of	putput buffer:
010Ehex	Enter second 14 bytes		01.	0Ehex	Copy second 14 bytes
00hex /0Fhex	Invert TI-Bit			Process in	nput buffer:
			00h	ex /0Fhex	Invert TO-Bit
19. Process	output buffer:		20.	Process of	putput buffer:
0108hex	Enter last bytes		01.	08hex	Copy last bytes
00hex /0Fhex	Invert TI-Bit			Process i	nput buffer:
				ex /0Fhex	Set AE-Bit
01 - Droosse	outout buffor		00	Droppes :	
	output buffer:				
00hex /0Fhex	Reset AV-Bit		UUh	ex /0Fhex	Reset AA and AE-Bit

12. Set Read/Write Head 1 to base state

Both read/write heads in the identification system can be independently set to the base state.

Controller

Identification system

1. Process output buffer:	2. Go to base state. Process input buffer:
00hex /0Fhex Set GR-Bit	00hex /0Fhex Reset BB-Bit
	4. Process input buffer:
00hex /0Fhex Reset GR-Bit	00hex /0Fhex Set BB-Bit

Appendix

Ordering code	$\underline{\text{BIS}} \ \underline{\text{C}} - \underline{\underline{6026}} - \underline{\underline{034}} - \underline{\underline{050}} - \underline{\underline{06}} - \underline{\underline{\text{ST19}}}$															
	Balluff Identification system															
	Series C Read/Write System Hardware Type 6026 = Metal enclosure, EtherNet/IP Software Type 034 = EtherNet/IP Version 050 = with two ports for external read/write heads BIS C-3 (except BIS C-350 and -352)															
									Interface 06 = Ethernet							
									Customer connection ST19= Plug variant X1 = Round connector for supply voltage (5-pin male) X3 = Round connector for Ethernet (4-pole female) X4 = Round connector for RS 232 interface (4-pin male)							
									Accessories (optional, not included in scope	Accessories for the BIS C-6026 can be found in the Balluff BIS catalog.						

included in scope of delivery)

The catalog can be downloaded on the Internet at "www.balluff.de".

BIS C-6026 EtherNet/IP Processor

Appendix

ASCII Table

Decimal	Hex	Control Code	ASCII	Decimal	Hex	ASCII	Decimal	Hex	ASCII
0	00	Ctrl @	NUL	43	2B	+	86	56	V
1	01	Ctrl A	SOH	44	2C	,	87	57	W
2	02	Ctrl B	STX	45	2D	-	88	58	Х
3	03	Ctrl C	ETX	46	2E		89	59	Y
4	04	Ctrl D	EOT	47	2F	/	90	5A	Z
5	05	Ctrl E	ENQ	48	30	0	91	5B	[
6	06	Ctrl F	ACK	49	31	1	92	5C	\
7	07	Ctrl G	BEL	50	32	2	93	5D	[
8	08	Ctrl H	BS	51	33	3	94	5E	^
9	09	Ctrl I	HT	52	34	4	95	5F	_
10	0A	Ctrl J	LF	53	35	5	96	60	`
11	0B	Ctrl K	VT	54	36	6	97	61	а
12	0C	Ctrl L	FF	55	37	7	98	62	b
13	0D	Ctrl M	CR	56	38	8	99	63	С
14	0E	Ctrl N	SO	57	39	9	100	64	d
15	0F	Ctrl O	SI	58	ЗA	:	101	65	е
16	10	Ctrl P	DLE	59	3B	;	102	66	f
17	11	Ctrl Q	DC1	60	3C	<	103	67	g
18	12	Ctrl R	DC2	61	3D	=	104	68	h
19	13	Ctrl S	DC3	62	ЗE	>	105	69	i
20	14	Ctrl T	DC4	63	3F	?	106	6A	j
21	15	Ctrl U	NAK	64	40	@	107	6B	k
22	16	Ctrl V	SYN	65	41	A	108	6C	
23	17	Ctrl W	ETB	66	42	В	109	6D	m
24	18	Ctrl X	CAN	67	43	С	110	6E	n
25	19	Ctrl Y	EM	68	44	D	111	6F	0
26	1A	Ctrl Z	SUB	69	45	E	112	70	p
27	1B	Ctrl [ESC	70	46	F	113	71	q
28	1C	Ctrl \	FS	71	47	G	114	72	r
29	1D	Ctrl]	GS	72	48	Н	115	73	S
30	1E	Ctrl ^	RS	73	49		116	74	t
31	1F	Ctrl _	US	74	4A	J	117	75	u
32	20		SP	75	4B	K	118	76	V
33	21		!	76	4C	L	119	77	W
34	22			77	4D	M	120	78	x
35	23		#	78	4E	N	121	79	у
36	24		\$	79	4F	0	122	7A	Z
37	25		%	80	50	Р	123	7B	{
38	26		&	81	51	Q	124	7C	
39	27		î	82	52	R	125	7D	}
40	28		(83	53	S	126	7E	~
41	29)	84	54	Т	127	7F	DEL
42	2A		*	85	55	U			
	-					-			

BIS C-6026 EtherNet/IP Processor

Index

Α

Dimensions 12 Wiring diagrams 14 Display elements 31 Power-on 31 EtherNet/IP connection 32 Identification system 31 ASCII-Table 45 Output buffer 24 Command 25 Bit header 24 Mixed data access 25 Processor Display elements 31 Output buffer 24 Data integrity 10 Input buffer 26 Function principle 24 Total buffer 24 Communication 28 Installation 14 Parameterizing 19 Product description 10 Control function 10 Auto-Read 19

В

Intended use 6 Operating conditions 13 Bus connection 11

С

CRC check 18 Error message 18 Initializing 18 Checksum 18

D

Data integrity 10 CRC_16 data check 10 Double read 10 DHCP 16 Double bit header 10 Dynamic mode 19

Е

EDS file 19 Input buffer 26 Bit header 26 Error code 27 Electrical data 12 EtherNet/IP 11

F

Function indicators 13 Function principle 10, 24 **G** Mixed data access 28 Run programs 29

Run programs 29 Save programs 28 Total buffer 24

I

IP address 16 AnyBus IPconfig 16 DHCP 16

L

Read times Dynamic mode 30 Static mode 29

Μ

Mechanical data 12 Installation Wiring diagrams 14 Processor 14

Ρ

Parameters CRC_16 19 Dynamic1 20 Dynamic2 20 Extra_Adr1 20 Extra_Adr2 21 Extra1 20 Extra2 20 Simultaneous 19 Parameterizing User program 19 EDS file 19 Product description 10

R

RSLoogix 5000 19

S

Write times 30 Safety 6 Operation 6 Start-up 6 Installation 6 Simultaneous data transmission 18 Control bit Job 25, 28 Job start 27, 28 Job end 18, 27, 28 Job error 27 Codetag Present 19, 27 Data carrier type 25 Base state 25 Head error 27 Toggle-Bit In 18, 25, 28 Toggle-Bit Out 18, 27, 28 Control function 10 Double bit header 10

Т

Technical data Dimensions 12 Operating conditions 13 Electrical data 12 Function indicators 13 Mechanical data 12 Ordering code 44

Ζ

Accessories 44

Balluff GmbH Schurwaldstrasse 9 73765 Neuhausen a.d.F. Germany Phone +49 7158 173-0 Fax +49 7158 5010 balluff@balluff.de www.balluff.com